nontarget organisms
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 52)

H-INDEX

25
(FIVE YEARS 5)

Author(s):  
Ju-Mi Hwang ◽  
Jeong-Won Bae ◽  
Eun-Ju Jung ◽  
Woo-Jin Lee ◽  
Woo-Sung Kwon

Although novaluron is an insect growth regulator with a low mammalian acute toxicity and a low risk to the environment and nontarget organisms, toxic effects of novaluron have been reported. However, no studies have yet evaluated the effect of novaluron on reproduction. Therefore, we examined the effects of novaluron on sperm functions. The spermatozoa of ICR mice were incubated with various concentrations of novaluron to induce capacitation. Then, sperm motion parameters and capacitation status were evaluated using CASA program and H33258/chlortetracycline staining. In addition, PKA activity and tyrosine phosphorylation were evaluated by Western blotting. After exposure, various sperm motion parameters were significantly decreased in a dose-dependent manner. The acrosome reaction was also significantly decreased in the high concentration groups. Sperm viability was significantly reduced at the highest concentration. In addition, PKA activity and tyrosine phosphorylation were also significantly altered. Thus, novaluron affects sperm viability, sperm motility, and motion kinematics during capacitation. Furthermore, it may promote the reduction in acrosome reactions. The physiological suppression of sperm function may depend on abnormal tyrosine phosphorylation via the alteration of PKA activity. Therefore, we suggest that it is necessary to consider reproductive toxicity when using novaluron as a pesticide.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0257263
Author(s):  
Elizangela Paz de Oliveira ◽  
Amanda Flávia da Silva Rovida ◽  
Juliane Gabriele Martins ◽  
Sônia Alvim Veiga Pileggi ◽  
Zelinda Schemczssen-Graeff ◽  
...  

Herbicides are widely used in agricultural practices for preventing the proliferation of weeds. Upon reaching soil and water, herbicides can harm nontarget organisms, such as bacteria, which need an efficient defense mechanism to tolerate stress induced by herbicides. 2,4-Dichlorophenoxyacetic acid (2,4-D) is a herbicide that exerts increased oxidative stress among bacterial communities. Bacterial isolates were obtained from the biofilm of tanks containing washing water from the packaging of different pesticides, including 2,4-D. The Pseudomonas sp. CMA-7.3 was selected because of its tolerance against 2,4-D toxicity, among several sensitive isolates from the biofilm collection. This study aimed to evaluate the antioxidative response system of the selected strain to 2,4-D. It was analyzed the activity of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase GPX enzymes, that are poorly known in the literature for bacterial systems. The Pseudomonas sp. CMA-7.3 presented an efficient response system in balancing the production of hydrogen peroxide, even at 25x the dose of 2,4-D used in agriculture. The antioxidative system was composed of Fe–SOD enzymes, less common than Mn–SOD in bacteria, and through the activities of KatA and KatB isoforms, working together with APX and GPX, having their activities coordinated possibly by quorum sensing molecules. The peroxide control is poorly documented for bacteria, and this work is unprecedented for Pseudomonas and 2,4-D. Not all bacteria harbor efficient response system to herbicides, therefore they could affect the diversity and functionality of microbiome in contaminated soils, thereby impacting agricultural production, environment sustainability and human health.


2021 ◽  
Author(s):  
Yongkui Zhang ◽  
Dongqiang Zeng ◽  
Lu Li ◽  
Xiuchun Hong ◽  
Hongmei Li-Byarlay ◽  
...  

Abstract In modern agricultural production, a variety of pesticides are widely used to protect crops against pests. However, extensive residues of these pesticides in the soil, water, and pollen have negatively affected the health of nontarget organisms, especially among pollinators such as bumblebees. As an important pollinator, the bumblebee plays a vital role in agricultural production and the maintenance of ecosystem diversity. Previous research has focused on the effects of a single pesticide on pollinating insects; however, the synergistic effects of multiple agents on bumblebees have been not studied in detail. In our test, the individual and combined toxicities of chlorpyrifos, thiamethoxam, and imidacloprid to bumblebees after 48 h of oral administration were documented by the equivalent linear equation method. Our results showed that the toxicity of each single pesticide exposure, from high to low, was imidacloprid, thiamethoxam, and chlorpyrifos. All binary and ternary combinations showed synergistic or additive effects. Therefore, our research not only shows that the mixed toxicity of insecticides has a significant effect on bumblebees, but also provides scientific guidelines for assessing the safety risks to bumblebees of these three insecticide compounds. In assessing the risk to pollinating insects, the toxicity levels of laboratory experiments are much lower than the actual toxicity in the field.


Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 986
Author(s):  
Keshava Mysore ◽  
Longhua Sun ◽  
Limb K. Hapairai ◽  
Chien-Wei Wang ◽  
Jessica Igiede ◽  
...  

Concerns for widespread insecticide resistance and the unintended impacts of insecticides on nontarget organisms have generated a pressing need for mosquito control innovations. A yeast RNAi-based insecticide that targets a conserved site in mosquito Irx family genes, but which has not yet been identified in the genomes of nontarget organisms, was developed and characterized. Saccharomyces cerevisiae constructed to express short hairpin RNA (shRNA) matching the target site induced significant Aedes aegypti larval death in both lab trials and outdoor semi-field evaluations. The yeast also induced high levels of mortality in adult females, which readily consumed yeast incorporated into an attractive targeted sugar bait (ATSB) during simulated field trials. A conserved requirement for Irx function as a regulator of proneural gene expression was observed in the mosquito brain, suggesting a possible mode of action. The larvicidal and adulticidal properties of the yeast were also verified in Aedes albopictus, Anopheles gambiae, and Culexquinquefasciatus mosquitoes, but the yeast larvicide was not toxic to other nontarget arthropods. These results indicate that further development and evaluation of this technology as an ecofriendly control intervention is warranted, and that ATSBs, an emerging mosquito control paradigm, could potentially be enriched through the use of yeast-based RNAi technology.


2021 ◽  
Vol 15 (10) ◽  
pp. e0009824
Author(s):  
Sri Jyosthsna Kancharlapalli ◽  
Cameron J. Crabtree ◽  
Kaz Surowiec ◽  
Scott D. Longing ◽  
Corey L. Brelsfoard

The frequency of arboviral disease epidemics is increasing and vector control remains the primary mechanism to limit arboviral transmission. Container inhabiting mosquitoes such as Aedes albopictus and Aedes aegypti are the primary vectors of dengue, chikungunya, and Zika viruses. Current vector control methods for these species are often ineffective, suggesting the need for novel control approaches. A proposed novel approach is autodissemination of insect growth regulators (IGRs). The advantage of autodissemination approaches is small amounts of active ingredients compared to traditional insecticide applications are used to impact mosquito populations. While the direct targeting of cryptic locations via autodissemination seems like a significant advantage over large scale applications of insecticides, this approach could actually affect nontarget organisms by delivering these highly potent long lasting growth inhibitors such as pyriproxyfen (PPF) to the exact locations that other beneficial insects visit, such as a nectar source. Here we tested the hypothesis that PPF treated male Ae. albopictus will contaminate nectar sources, which results in the indirect transfer of PPF to European honey bees (Apis mellifera). We performed bioassays, fluorescent imaging, and mass spectrometry on insect and artificial nectar source materials to examine for intra- and interspecific transfer of PPF. Data suggests there is direct transfer of PPF from Ae. albopictus PPF treated males and indirect transfer of PPF to A. mellifera from artificial nectar sources. In addition, we show a reduction in fecundity in Ae. albopictus and Drosophila melanogaster when exposed to sublethal doses of PPF. The observed transfer of PPF to A. mellifera suggests the need for further investigation of autodissemination approaches in a more field like setting to examine for risks to insect pollinators.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Nattanan Panjaworayan T-Thienprasert ◽  
Jiraroj T-Thienprasert ◽  
Jittiporn Ruangtong ◽  
Thitiradsadakorn Jaithon ◽  
Pattana Srifah Huehne ◽  
...  

Fungicides have been extensively used to control fungal diseases that affect several crops including ornamental crops. However, concerns have arisen due to a development of fungicide resistance and increasing incidences of fungicide toxicity effects on nontarget organisms. As zinc oxide nanoparticles (ZnO NPs) have demonstrated effective antimicrobial activity, this study is therefore aimed at synthesizing ZnO NPs from banana peels using a green chemistry method in a large scale and determines their physical properties including their inhibitory effects against a plant pathogen fungus causing anthracnose in orchids, Colletotrichum sp. Results from X-ray diffraction and scanning electron microscope indicated that the synthesized ZnO NPs were obtained without other crystalline impurities, and they were spherical in shape with the average diameter of 256 ± 40   nm , respectively. The absorption peak was found to be centered at ~370 nm with the optical band gap value approximately 2.8 eV. Fourier transform infrared spectroscopy analysis confirmed the presence of several functional groups on synthesized ZnO NPs. The total amount of synthesized ZnO NPs was obtained about 170 g for a synthesis reaction. By performing the antifungal activity assay, high doses of green synthesized ZnO NPs significantly inhibited growth of isolated Colletotrichum sp. (KUFC 021) on culture plates. Under greenhouse conditions, high doses of synthesized ZnO NPs also significantly reduced anthracnose symptoms on inoculated orchid leaves with the Colletotrichum sp. (KUFC 021).


2021 ◽  
Author(s):  
Elizangela Paz Oliveira ◽  
Amanda Flávia da Silva Rovida ◽  
Juliane Gabriele Martins ◽  
Sônia Alvim Veiga Pileggi ◽  
Zelinda Schemczssen-Graeff ◽  
...  

Herbicides are widely used in agricultural practices for preventing the proliferation of weeds that compete with crops for survival. Upon reaching soil and water, herbicides can damage nontarget organisms, such as bacteria, which need an efficient defense mechanism to tolerate the stress induced by herbicides. 2,4-Dichlorophenoxyacetic acid (2,4-D) is a herbicide that exerts increased oxidative stress among bacterial communities that consequently witness an increased toxicity in their microenvironments. Bacterial isolates were obtained from the biofilm of water that was contaminated with 2,4-D. This biofilm originated from the tanks containing washing water from the packaging of different pesticides, including 2,4-D. Moreover, several isolates were sensitive to biofilm toxicity; however, they remained alive in the presence of 2,4-D. The Pseudomonas sp. CMA-7.3 was selected because of its tolerance against biofilm agrochemicals. Therefore, the objective of this study is to evaluate the antioxidative response system of the Pseudomonas sp. CMA-7.3. This study also analyzed poorly evaluated enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase GPX, in the bacterial systems. The toxic effects of 2,4-D on bacteria were evaluated using mechanisms indicating oxidative stress, such as growth curve, cell viability, peroxide, and malondialdehyde. The Pseudomonas sp. CMA-7.3 was an efficient response system against the activity of antioxidant enzymes such as SOD, CAT, APX, and GPX in balancing the production of H 2 O 2 , even at high doses as 25x the field dose of the herbicide, thereby proving the toxicity of 2,4-D for this strain and showing the ability of the strain to tolerate 2,4-D. The adaptation of this microorganism to herbicide exposure is truly relevant for improving future metabolic studies on bacterial communities. The strain showed a great potential in the application and developmental prospects of a new product in the bioremediation process of environments contaminated by these herbicides.


Author(s):  
Matthew R. Barrett ◽  
Camila C. Filgueiras ◽  
Denis S. Willett

AbstractShowcasing how semiochemicals are both multifunctional and can influence a community of organisms is a constant frontier shared by chemical ecologists and applied entomologists alike. As researchers in these fields continue to share broad and overlapping interests, converging on one system could allow for a better understanding of community interactions and the chemical substances that mediate them. Cucurbit systems are strategically positioned to study these types of interactions because they combine the elements of plant–herbivore, plant–predator, and plant pollinator into one model and are systems where researchers can pursue both basic and applied questions. In this review, we propose Cucumis sativus [cucumber], Acalymma vittatum [striped cucumber beetle], Celatoria setosa [a natural enemy], and generalist pollinators as a system for continued investigation into semiochemicals, their multifunctional roles, and their influence on both target and nontarget organisms. We believe this system is ripe for further exploration at the frontiers in chemical ecology and applied entomology.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4003
Author(s):  
Dário Rodrigues do Nascimento Junior ◽  
Antonio Tabernero ◽  
Elaine Christine de Magalhães Cabral Albuquerque ◽  
Silvio Alexandre Beisl Vieira de Melo

As an alternative to synthetic pesticides, natural chemistries from living organisms, are not harmful to nontarget organisms and the environment, can be used as biopesticides, nontarget. However, to reduce the reactivity of active ingredients, avoid undesired reactions, protect from physical stress, and control or lower the release rate, encapsulation processes can be applied to biopesticides. In this review, the advantages and disadvantages of the most common encapsulation processes for biopesticides are discussed. The use of supercritical fluid technology (SFT), mainly carbon dioxide (CO2), to encapsulate biopesticides is highlighted, as they reduce the use of organic solvents, have simpler separation processes, and achieve high-purity particles. This review also presents challenges to be surpassed and the lack of application of SFT for biopesticides in the published literature is discussed to evaluate its potential and prospects.


2021 ◽  
Vol 25 (06) ◽  
pp. 1255-1262
Author(s):  
Sanna .

Worldwide extensive use of agrochemicals in agricultural production poses potential ecotoxicological effects and disturbs aquatic biota, more specially fish. This study aims to evaluate comparative effects of selected agrochemicals such as profenofos, endosulfan and deltamethrin on biochemical, endocrine and genetic profiles of the common carp (Cyprinus carpio L.). Forty healthy carp (50 ± 7.45g and 15 ± 5.86 cm) were selected randomly and equally divided into four groups; control group labeled as E0 and three treated groups having 4 ppb of profenofos, deltamethrin and endosulfan, labeled as E1, E2, E3 respectively. Fish were exposed to chemicals for 96 h. Obtained results revealed that, significant changes were observed in biochemical parameters of treated groups in comparison with control group (P < 0.05): glucose, creatinine, serum amylase, alkaline phosphate, sodium and phosphorus levels increased significantly, while a significant (P < 0.05) reduction was recorded in serum protein, triglycerides, serum lipase and magnesium levels. Whereas significant increase in TSH and cortisol levels were found, while significant decrease (P < 0.05) in T3, T4 and insulin level were observed in experimental groups as compared to control group. Genetic parameters were also affected under the stressors and showed significant increase (P < 0.05) in micronuclei frequency in erythrocytes of treated fish compared to the control group. Toxicities of the three agrochemicals were: endosulfan > deltamethrin > profenofos. The obtained results provide solid evidence that unobservant use of such agrochemical causes a pernicious effect on nontarget organisms such as fish. © 2021 Friends Science Publishers


Sign in / Sign up

Export Citation Format

Share Document