Three-Dimensional Visualization of the T-System of Frog Muscle Using High Voltage Electron Microscopy and a Lanthanum Stain

Author(s):  
Lee D. Peachey ◽  
Clara Franzini-Armstrong

The effective study of biological tissues in thick slices of embedded material by high voltage electron microscopy (HVEM) requires highly selective staining of those structures to be visualized so that they are not hidden or obscured by other structures in the image. A tilt pair of micrographs with subsequent stereoscopic viewing can be an important aid in three-dimensional visualization of these images, once an appropriate stain has been found. The peroxidase reaction has been used for this purpose in visualizing the T-system (transverse tubular system) of frog skeletal muscle by HVEM (1). We have found infiltration with lanthanum hydroxide to be particularly useful for three-dimensional visualization of certain aspects of the structure of the T- system in skeletal muscles of the frog. Specifically, lanthanum more completely fills the lumen of the tubules and is denser than the peroxidase reaction product.

Author(s):  
G. E. Tyson ◽  
M. J. Song

Natural populations of the brine shrimp, Artemia, may possess spirochete- infected animals in low numbers. The ultrastructure of Artemia's spirochete has been described by conventional transmission electron microscopy. In infected shrimp, spirochetal cells were abundant in the blood and also occurred intra- and extracellularly in the three organs examined, i.e. the maxillary gland (segmental excretory organ), the integument, and certain muscles The efferent-tubule region of the maxillary gland possessed a distinctive lesion comprised of a group of spirochetes, together with numerous small vesicles, situated in a cave-like indentation of the base of the tubule epithelium. in some instances the basal lamina at a lesion site was clearly discontinuous. High-voltage electron microscopy has now been used to study lesions of the efferent tubule, with the aim of understanding better their three-dimensional structure.Tissue from one maxillary gland of an infected, adult, female brine shrimp was used for HVEM study.


Author(s):  
William H. Massover

Stereoscopic examination of thick sections of fixed and embedded biological tissues by high voltage electron microscopy has been shown to allow direct visualization of three-dimensional fine structure. The present report will consider the occurrence of some new technical problems in specimen preparation and Image interpretation that are not common during lower voltage studies of thin sections.Thick Sectioning and Tissue Coloration - Epon sections of 0.5 μm or more that are cut with glass knives do not have a uniform thickness as Judged by their interference colors; these colors change with time during their flotation on the knife bath, and again when drying onto the specimen support. Quoted thicknesses thus must be considered only as rough estimates unless measured in specific regions by other methods. Chloroform vapors do not always result in good spreading of thick sections; however, they will spread spontaneously to large degrees after resting on the flotation bath for several minutes. Ribbons of thick sections have been almost impossible to obtain.


Author(s):  
Brenda R. Eisenberg ◽  
Lee D. Peachey

Analysis of the electrical properties of the t-system requires knowledge of the geometry of the t-system network. It is now possible to determine the network parameters experimentally by use of high voltage electron microscopy. The t-system was marked with exogenous peroxidase. Conventional methods of electron microscopy were used to fix and embed the sartorius muscle from four frogs. Transverse slices 0.5-1.0 μm thick were viewed at an accelerating voltage of 1000 kV using the JEM-1000 high voltage electron microscope at Boulder, Colorado and prints at x5000 were used for analysis.The length of a t-branch (t) from node to node (Fig. 1a) was measured with a magnifier; at least 150 t-branches around 30 myofibrils were measured from each frog. The mean length of t is 0.90 ± 0.11 μm and the number of branches per myofibril is 5.4 ± 0.2 (mean ± SD, n = 4 frogs).


2016 ◽  
Vol 57 (6) ◽  
pp. 918-921 ◽  
Author(s):  
Kazuhisa Sato ◽  
Shunya Tashiro ◽  
Yohei Yamaguchi ◽  
Takanori Kiguchi ◽  
Toyohiko J. Konno ◽  
...  

1975 ◽  
Vol 66 (2) ◽  
pp. 404-413 ◽  
Author(s):  
J J Paulin

The unitary nature of the chondriome of two species of trypanosomatids, Blastocrithidia culicis and Trypanosoma cruzi, has been demonstrated by utilizing serial thick-sectioning techniques combined with high voltage electron microscopy. Profiles of mitochondrial elements seen in thin sections and suspected to be parts of a continuum were confirmed by serial thick sectioning (0.25-0.50 mum thick) and stereopair analysis to be parts of the same mitochondrion. Three-dimensional models obtained from tracings of mitochondrial profiles on cellulose acetate reveal the mitochondrion of B. culicis to consist of a posterior mass with six tubular extensions extending upward and terminating in the anterior apex. The kinetoplast was found suspended between two of the tubular extensions, or less frequently, protuding as a nodule from one of the extensions. A bifurcation of one of the extensions was found in some specimens. The mitochondrion of T. cruzi consists of a triangular-shaped convoluted tubule, the base being the kinetoplast portion while the apex is directed posteriorly. The mitochondrion bifurcates behind the flagellar pocket, lateral to the kinetoplast, sending two entwined extensions into the tenuous anterior apex. Whether the mitochondrion of T. cruzi is unitary in the trypomastigote form was not determined in this study, since only epimastigote forms were used.


Sign in / Sign up

Export Citation Format

Share Document