transverse tubular system
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 5)

H-INDEX

34
(FIVE YEARS 0)

2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Daiki Watanabe ◽  
Masanobu Wada

The purpose of this study is to investigate the mechanism underlying sarcoplasmic reticulum (SR) Ca2+ leakage at recovery phase after in vivo contractions. Rat gastrocnemius muscles were electrically stimulated in vivo, and then mechanically skinned fibers were prepared from the muscles excised 30 min after repeated high-intensity contractions. SR Ca2+ leakage was increased in the skinned fibers from stimulated muscles. Thereafter, SR Ca2+ leakage in skinned fibers was measured (1) under a continuously depolarized condition and (2) in the presence of nifedipine in the sealed transverse tubular system. In either of the two conditions, SR Ca2+ leakage in the rested fibers reached a level similar to that in the stimulated fibers. Furthermore, 1 mM tetracaine (Tet) treatment, but not 3 mM Mg2+ (3 Mg) treatment, lessened SR Ca2+ leakage in stimulated fibers. Depolarization-induced force in skinned fibers was more greatly decreased by Tet treatment than by 3 Mg treatment (92% reduction in Tet versus 31% reduction in 3 Mg), whereas caffeine-induced force in skinned fibers was similarly decreased by either treatment (73% reduction in Tet versus 75% reduction in 3 Mg). This difference indicates that Tet exerts a greater inhibitory effect on the dihydropyridine receptor (DHPR) signal to ryanodine receptor (RYR) than 3 Mg, although their inhibitory effects on RYR are almost similar. These results suggest that the increased Ca2+ leakage after muscle contractions is mainly caused by the orthograde signal of DHPRs to RYRs.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yankun Lyu ◽  
Vipin K. Verma ◽  
Younjee Lee ◽  
Iosif Taleb ◽  
Rachit Badolia ◽  
...  

AbstractIt is well established that the aging heart progressively remodels towards a senescent phenotype, but alterations of cellular microstructure and their differences to chronic heart failure (HF) associated remodeling remain ill-defined. Here, we show that the transverse tubular system (t-system) and proteins underlying excitation-contraction coupling in cardiomyocytes are characteristically remodeled with age. We shed light on mechanisms of this remodeling and identified similarities and differences to chronic HF. Using left ventricular myocardium from donors and HF patients with ages between 19 and 75 years, we established a library of 3D reconstructions of the t-system as well as ryanodine receptor (RyR) and junctophilin 2 (JPH2) clusters. Aging was characterized by t-system alterations and sarcolemmal dissociation of RyR clusters. This remodeling was less pronounced than in HF and accompanied by major alterations of JPH2 arrangement. Our study indicates that targeting sarcolemmal association of JPH2 might ameliorate age-associated deficiencies of heart function.


2021 ◽  
Vol 7 ◽  
Author(s):  
Dominik J. Fiegle ◽  
Martin Schöber ◽  
Sven Dittrich ◽  
Robert Cesnjevar ◽  
Karin Klingel ◽  
...  

Chronic heart failure (HF) in adults causes remodeling of the cardiomyocyte transverse tubular system (t-system), which contributes to disease progression by impairing excitation-contraction (EC) coupling. However, it is unknown if t-system remodeling occurs in pediatric heart failure. This study investigated the t-system in pediatric viral myocarditis. The t-system and integrity of EC coupling junctions (co-localization of L-type Ca2+ channels with ryanodine receptors and junctophilin-2) were analyzed by 3D confocal microscopy in left-ventricular (LV) samples from 5 children with myocarditis (age 14 ± 3 months), undergoing ventricular assist device (VAD) implantation, and 5 children with atrioventricular septum defect (AVSD, age 17 ± 3 months), undergoing corrective surgery. LV ejection fraction (EF) was 58.4 ± 2.3% in AVSD and 12.2 ± 2.4% in acute myocarditis. Cardiomyocytes from myocarditis samples showed increased t-tubule distance (1.27 ± 0.05 μm, n = 34 cells) and dilation of t-tubules (volume-length ratio: 0.64 ± 0.02 μm2) when compared with AVSD (0.90 ± 0.02 μm, p < 0.001; 0.52 ± 0.02 μm2, n = 61, p < 0.01). Intriguingly, 4 out of 5 myocarditis samples exhibited sheet-like t-tubules (t-sheets), a characteristic feature of adult chronic heart failure. The fraction of extracellular matrix was slightly higher in myocarditis (26.6 ± 1.4%) than in AVSD samples (24.4 ± 0.8%, p < 0.05). In one case of myocarditis, a second biopsy was taken and analyzed at VAD explantation after extensive cardiac recovery (EF from 7 to 56%) and clinical remission. When compared with pre-VAD, t-tubule distance and density were unchanged, as well as volume-length ratio (0.67 ± 0.04 μm2 vs. 0.72 ± 0.05 μm2, p = 0.5), reflecting extant t-sheets. However, junctophilin-2 cluster density was considerably higher (0.12 ± 0.02 μm−3 vs. 0.05 ± 0.01 μm−3, n = 9/10, p < 0.001), approaching values of AVSD (0.13 ± 0.05 μm−3, n = 56), and the measure of intact EC coupling junctions showed a distinct increase (20.2 ± 5.0% vs. 6.8 ± 2.2%, p < 0.001). Severe t-system loss and remodeling to t-sheets can occur in acute HF in young children, resembling the structural changes of chronically failing adult hearts. T-system remodeling might contribute to cardiac dysfunction in viral myocarditis. Although t-system recovery remains elusive, recovery of EC coupling junctions may be possible and deserves further investigation.


2020 ◽  
Vol 44 (3) ◽  
pp. 402-413
Author(s):  
Jack A. Rall

By early 1954, there existed a plausible model of muscle contraction called the sliding filament model. In addition, the nature of muscle excitation was understood. Surprisingly, the link between the membrane excitation and contraction was entirely unknown. This dilemma has been called the time-distance paradox. The path to discovery of the missing link between excitation and contraction was a rocky one involving the simultaneous but independent development of physiological and morphological studies. From the viewpoint of physiology, significant events included the most thrilling moment of a scientific life, confirmation of a hypothesis that was wrong, a major surprise and shock, a result not expected from evolutionary relationships, and disappointment and confusion before clarity. From the viewpoint of morphology, there was the exciting beginning and rapid development of biological electron microscopy, heroic experiments, the importance of sample preparative procedures, and discovery of clues from the old light microscopic literature. However, it was the confluence of physiology and morphology that brought clarity and a major advance in understanding, leading to the discovery of the transverse tubular system and inward spread of activation in skeletal muscle.


2018 ◽  
Author(s):  
Dylan F Colli ◽  
Ryan Blood ◽  
Aparna C Sankarankutty ◽  
Frank B Sachse ◽  
Michael Frisk ◽  
...  

In mammalian ventricular cardiomyocytes, invaginations of the surface membrane form the transverse tubular system (T-system) which consists of transverse tubules (TTs) that align with sarcomeres and Z-lines as well as longitudinal tubules (LTs) that are present between Z-lines in some species. In many cardiac disease etiologies the T-system is perturbed, which is believed to promote spatially heterogeneous, dyssynchronous Ca2+ release and inefficient contraction. In general, T-system characterization approaches have been directed primarily at isolated cells and do not detect subcellular T-system heterogeneity. Here we present MatchedMyo, a matched-filter based algorithm for subcellular T-system characterization in isolated cardiomyocytes and millimeter-scale myocardial sections. The algorithm utilizes "filters" representative of TTs, LTs, and T-system absence. Application of the algorithm to cardiomyocytes isolated from rat disease models of myocardial infarction (MI), dilated cardiomyopathy induced via aortic banding (AB), and sham surgery confirmed and quantified heterogeneous T-system structure and remodeling. Cardiomyocytes from post-MI hearts exhibited increasing T-system disarray as proximity to the infarct increased. We found significant (p<0.05, Welch's t-test) increases in LT density within cardiomyocytes proximal to the infarct (12±3%, data reported as mean ± SD, n=3) vs. sham (4±2%, n=5), but not distal to the infarct (7±1%, n=3). The algorithm also detected decreases in TTs within 5° of the myocyte minor axis for isolated AB (36±9%, n=3) and MI cardiomyocytes located intermediate (37±4%, n=3) and proximal (34±4%, n=3) to the infarct vs. sham (57±12%, n=5). Application of bootstrapping to rabbit MI tissue revealed distal sections comprised 18.9±1.0% TTs while proximal sections comprised 10.1±0.8% TTs (p<0.05), a 46.6% decrease. The matched filter approach therefore provides a robust and scalable technique for T-system characterization from isolated cells through millimeter-scale myocardial sections.


2018 ◽  
Vol 1 ◽  
pp. 153-160 ◽  
Author(s):  
CER Smith ◽  
AW Trafford ◽  
JL Caldwell ◽  
KM Dibb

Sign in / Sign up

Export Citation Format

Share Document