On the High Voltage Electron Microscopy (1 MeV) of Biological Thick Sections

Author(s):  
William H. Massover

Stereoscopic examination of thick sections of fixed and embedded biological tissues by high voltage electron microscopy has been shown to allow direct visualization of three-dimensional fine structure. The present report will consider the occurrence of some new technical problems in specimen preparation and Image interpretation that are not common during lower voltage studies of thin sections.Thick Sectioning and Tissue Coloration - Epon sections of 0.5 μm or more that are cut with glass knives do not have a uniform thickness as Judged by their interference colors; these colors change with time during their flotation on the knife bath, and again when drying onto the specimen support. Quoted thicknesses thus must be considered only as rough estimates unless measured in specific regions by other methods. Chloroform vapors do not always result in good spreading of thick sections; however, they will spread spontaneously to large degrees after resting on the flotation bath for several minutes. Ribbons of thick sections have been almost impossible to obtain.

Author(s):  
Lee D. Peachey ◽  
Clara Franzini-Armstrong

The effective study of biological tissues in thick slices of embedded material by high voltage electron microscopy (HVEM) requires highly selective staining of those structures to be visualized so that they are not hidden or obscured by other structures in the image. A tilt pair of micrographs with subsequent stereoscopic viewing can be an important aid in three-dimensional visualization of these images, once an appropriate stain has been found. The peroxidase reaction has been used for this purpose in visualizing the T-system (transverse tubular system) of frog skeletal muscle by HVEM (1). We have found infiltration with lanthanum hydroxide to be particularly useful for three-dimensional visualization of certain aspects of the structure of the T- system in skeletal muscles of the frog. Specifically, lanthanum more completely fills the lumen of the tubules and is denser than the peroxidase reaction product.


1975 ◽  
Vol 66 (2) ◽  
pp. 404-413 ◽  
Author(s):  
J J Paulin

The unitary nature of the chondriome of two species of trypanosomatids, Blastocrithidia culicis and Trypanosoma cruzi, has been demonstrated by utilizing serial thick-sectioning techniques combined with high voltage electron microscopy. Profiles of mitochondrial elements seen in thin sections and suspected to be parts of a continuum were confirmed by serial thick sectioning (0.25-0.50 mum thick) and stereopair analysis to be parts of the same mitochondrion. Three-dimensional models obtained from tracings of mitochondrial profiles on cellulose acetate reveal the mitochondrion of B. culicis to consist of a posterior mass with six tubular extensions extending upward and terminating in the anterior apex. The kinetoplast was found suspended between two of the tubular extensions, or less frequently, protuding as a nodule from one of the extensions. A bifurcation of one of the extensions was found in some specimens. The mitochondrion of T. cruzi consists of a triangular-shaped convoluted tubule, the base being the kinetoplast portion while the apex is directed posteriorly. The mitochondrion bifurcates behind the flagellar pocket, lateral to the kinetoplast, sending two entwined extensions into the tenuous anterior apex. Whether the mitochondrion of T. cruzi is unitary in the trypomastigote form was not determined in this study, since only epimastigote forms were used.


Author(s):  
Richard S. Hannah

The formation of junctional complexes between endothelial cell processes was examined in rat spinal cords, from age birth to six weeks. Segments of spinal cord were removed from the region of the cervical enlargement and fixed. For comparative purposes, animals from each time group were subdivided into groups, fixed by either immersion or perfusion with an aldehyde combination in sodium cacodylate buffer and embedded in Araldite. Thin sections were examined by conventional transmission electron microscopy. Thick sections (0.5μ - 1.0μ) were stained with uranyl magnesium acetate for four hours at 60°C and lead citrate for 30 mins. and examined in the AEI Mark II High Voltage Electron Microscope.


Author(s):  
Robert V. Rice ◽  
J. S. Lally

Several structures have been proposed to account for the appearance of Z and M-lines seen in thin sections of striated muscle. The high penetrating power of 800,000 to 1,000,000 volt electrons coupled with stereology offers a unique opportunity to resolve the complicated fine structure of Z and M-lines. In addition use has been made of the recently developed extraction and reconstitution of Z and M-lines (Stromer, Hartshorne, Mueller, and Rice, J. Cell Biol., 40, 167, 1969). Removal of portions of these structures helps to eliminate confusion due to adjacent structures.


Author(s):  
M.E. Rock ◽  
J.A. Anderson ◽  
P.S. Binder

High voltage electron microscopy (HVEM) has been employed in various ways (whole mounts of cells stereo pair imaging, axial tomography, and serial sections for reconstruction) to elucidate three dimensional (3-D) ultrastructural data. The increased specimen thickness allows further data analysis unobtainable from ultra-thin sections. HVEM can reduce the number of sections needed in 3-D reconstructiortby approximately ten times over conventional transmission electron microscopy (CTEM). But increasing section thickness also increases wear on the diamond knife used to section. We have compared the serial sections obtained from a histo-grade diamond knife with those from an E.M. grade ultra-knife. Both sets of sections were cut 0.5 μm thick from the same block, and evaluated under the one million volt beam of the HVEM.


Author(s):  
B. F. McEwen ◽  
C. L. Rieder ◽  
M. Radermacher ◽  
R. A. Grassucci ◽  
J. N. Turner ◽  
...  

High-voltage electron microscopy (HVEM) has considerably increased the thickness limit of biological specimens that can be visualized at high resolution. Because of its increased penetration power, HVEM is potentially the most powerful tool available for obtaining three-dimensional (3D) information concerning the structure of cells. In the past, such information was primarily obtained from serial thin sections or techniques based on surface shadowing, but these methods have severe problems and limitations which can only be overcome by imaging greater depths in the samples (see refs. 1 and 2). HVEM has yet to realize its potential for 3D structural determination because of the confusion arising from the overlap of features at different depths in the sample. Due to the relatively large depth of field, which exceeds the specimen thickness, HVEM (like all electron microscopy) produces an image that is essentially a projection of the sample.


Author(s):  
Mircea Fotino ◽  
Thomas H. Giddings ◽  
Roland O. Voth ◽  
George P. Wray

The devices and methodology required for applying low-temperature imaging to biological problems have been under development during the last few years at the Boulder HVEM Facility. The present report describes briefly the characteristics and preliminary performance of this endeavor.


Author(s):  
Craig H. Bailey ◽  
Lee D. Peachey

Our present understanding of the distribution and morphology of the sarcoplasmic reticulum (SR) in frog slow and twitch muscle fibers has been derived largely from the examination of thin sections by electron microscopy. This conventional approach to the study of an organelle as complex as the SR is limited to a degree by section thickness, and the extraction of three-dimensional information must usually be gathered from an extensive collection of two-dimensional images. The present study represents an alternative approach to the problem of investigating the three-dimensional organization of the SR by utilizing high voltage electron microscopy (HVEM) and examining stereoscopic images of selectively stained 1.0 /μm thick slices of muscle tissue.Slow and twitch fibers from the distal fiber bundles of the frog (Rana pipiens) cruralis muscle were processed for electron microscopy according to the selective SR staining technique (DAB-H2O2 and Os-ferrocyanide) developed by Waugh. Tissue slices from 0.25 to 1.0 μm in thickness were cut on a diamond knife, mounted on grids either with or without plastic support films, and examined using the JEM-1000 microscope at the University of Colorado operating at an accelerating voltage of 1000 kV.


Author(s):  
L. D. Ackerman ◽  
S. H. Y. Wei

Mature human dental enamel has presented investigators with several difficulties in ultramicrotomy of specimens for electron microscopy due to its high degree of mineralization. This study explores the possibility of combining ion-milling and high voltage electron microscopy as a means of circumventing the problems of ultramicrotomy.A longitudinal section of an extracted human third molar was ground to a thickness of about 30 um and polarized light micrographs were taken. The specimen was attached to a single hole grid and thinned by argon-ion bombardment at 15° incidence while rotating at 15 rpm. The beam current in each of two guns was 50 μA with an accelerating voltage of 4 kV. A 20 nm carbon coating was evaporated onto the specimen to prevent an electron charge from building up during electron microscopy.


Author(s):  
T. Mukai ◽  
T. E. Mitchell

Radiation-induced homogeneous precipitation in Ni-Be alloys was recently observed by high voltage electron microscopy. A coupling of interstitial flux with solute Be atoms is responsible for the precipitation. The present investigation further shows that precipitation is also induced at thin foil surfaces by electron irradiation under a high vacuum.


Sign in / Sign up

Export Citation Format

Share Document