Direct Observation of Defect Motion in Silicon By High-Resolution Transmission Electron Microscopy

Author(s):  
M. A. Parker ◽  
R. Sinclair

Observations of defect motion by high resolution transmission electron microscopy (HRTEM) are rare. Unfortunately, the application of this technique has been limited to a few unique materials, those that can obtain sufficient thermal energy for the initiation of atomic motion through the heating effects of the incident electron beam. In earlier work, it was speculated that events such as the motion of crystal defects, observed in cadmium telluride (CdTe) with the electron beam heating method, might become evident in materials such as silicon (Si) if only sufficiently high temperatures could be achieved (∼ 600°C) in-situ.A silicon specimen with a suitable population of defects was chosen for examination; it consisted of a cross-section of.3 μ ﹛100﹜ silicon on ﹛1102﹜ sapphire (SOS from Union Carbide) which was implant amorphized by 28Si+ ion implantation at an energy of ∼ 170keV.

1997 ◽  
Vol 12 (4) ◽  
pp. 906-914 ◽  
Author(s):  
M. Reder ◽  
J. Krelaus ◽  
D. Müller ◽  
K. Heinemann ◽  
H. C. Freyhardt

The decomposition of Yba2Cu4O8 (Y-124) into Yba2Cu3O7-δ (Y-123) and CuO at high temperatures has been expected to create Y-123 with finely dispersed CuO precipitates suitable for flux pinning. In fact, samples of thermally decomposed Y-124 exhibit a critical current density, Jc, which is enhanced with respect to the starting material as well as to pure Y-123. Transmission electron microscopy (TEM) studies of furnace annealed Y-124 were not suitable to clarify the reason for this Jc enhancement. Nevertheless, the formation and growth of CuO precipitates have been observed by in situ decomposition of the Y-124 starting material due to electron beam heating within the TEM.


2019 ◽  
Vol 5 (2) ◽  
Author(s):  
Marco Campanini ◽  
Rolf Erni ◽  
Marta D. Rossell

Abstract The ongoing trend toward miniaturization has led to an increased interest in the magnetoelectric effect, which could yield entirely new device concepts, such as electric field-controlled magnetic data storage. As a result, much work is being devoted to developing new robust room temperature (RT) multiferroic materials that combine ferromagnetism and ferroelectricity. However, the development of new multiferroic devices has proved unexpectedly challenging. Thus, a better understanding of the properties of multiferroic thin films and the relation with their microstructure is required to help drive multiferroic devices toward technological application. This review covers in a concise manner advanced analytical imaging methods based on (scanning) transmission electron microscopy which can potentially be used to characterize complex multiferroic materials. It consists of a first broad introduction to the topic followed by a section describing the so-called phase-contrast methods, which can be used to map the polar and magnetic order in magnetoelectric multiferroics at different spatial length scales down to atomic resolution. Section 3 is devoted to electron nanodiffraction methods. These methods allow measuring local strains, identifying crystal defects and determining crystal structures, and thus offer important possibilities for the detailed structural characterization of multiferroics in the ultrathin regime or inserted in multilayers or superlattice architectures. Thereafter, in Section 4, methods are discussed which allow for analyzing local strain, whereas in Section 5 methods are addressed which allow for measuring local polarization effects on a length scale of individual unit cells. Here, it is shown that the ferroelectric polarization can be indirectly determined from the atomic displacements measured in atomic resolution images. Finally, a brief outlook is given on newly established methods to probe the behavior of ferroelectric and magnetic domains and nanostructures during in situ heating/electrical biasing experiments. These in situ methods are just about at the launch of becoming increasingly popular, particularly in the field of magnetoelectric multiferroics, and shall contribute significantly to understanding the relationship between the domain dynamics of multiferroics and the specific microstructure of the films providing important guidance to design new devices and to predict and mitigate failures.


Sign in / Sign up

Export Citation Format

Share Document