Microstructural characterization of a cast RENi5-based alloy

Author(s):  
G. M. Micha ◽  
L. Zhang

RENi5 (RE: rare earth) based alloys have been extensively evaluated for use as an electrode material for nickel-metal hydride batteries. A variety of alloys have been developed from the prototype intermetallic compound LaNi5. The use of mischmetal as a source of rare earth combined with transition metal and Al substitutions for Ni has caused the evolution of the alloy from a binary compound to one containing eight or more elements. This study evaluated the microstructural features of a complex commercial RENi5 based alloy using scanning and transmission electron microscopy.The alloy was evaluated in the as-cast condition. Its chemistry in at. pct. determined by bulk techniques was 12.1 La, 3.2 Ce, 1.5 Pr, 4.9 Nd, 50.2 Ni, 10.4 Co, 5.3 Mn and 2.0 Al. The as-cast material was of low strength, very brittle and contained a multitude of internal cracks. TEM foils could only be prepared by first embedding pieces of the alloy in epoxy.

1996 ◽  
Vol 433 ◽  
Author(s):  
Jeong Soo Lee ◽  
Hyun JA Kwon ◽  
Young Woo Jeong ◽  
Hyun HA Kim ◽  
Kyu HO Park ◽  
...  

AbstractMicrostructures and interdiffusions of Pt/Ti/SiO2/Si and RuO2/SiO2/Si during annealing in O2 were investigated using x-ray diffraction, Auger electron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The degree of oxidation and the interdiffusion of elements have remarkably increased with increasing temperature above 500 °C for the Pt/Ti/SiO2/Si case. The generation of Pt hillocks commenced at 500 °C. The Pt-silicide phase was also observed near the TiOx/SiO2 interface. The microstructural variations occurred to only a small amount for the RuO2/SiO2/Si case over the temperature range 300 – 700 °C. While there was no hillock formation, the RuO2 film surface was roughened by the thermal grooving phenomenon. A thin interlayer phase was found at the RuO2/SiO2 interface.


2014 ◽  
Vol 936 ◽  
pp. 656-660
Author(s):  
Alexandra Gkanatsiou ◽  
Christos B. Lioutas ◽  
Nikolaos Frangis ◽  
Narendraraj Chandraraj ◽  
Efstathios K. Polychroniadis ◽  
...  

The present work concerns the microstructural characterization of a multi-component (based on GaN and related materials) and multi-layered (5 layers) film, grown on 6H-SiC substrate (with a misorientation of 1 degree off from the (0001) plane), using transmission electron microscopy (TEM). The TEM characterization showed no surface undulation, despite the presence of steps in the SiC/AlN interface.


2000 ◽  
Author(s):  
W. O. Soboyejo ◽  
C. Mercer ◽  
S. Allameh ◽  
B. Nemetski ◽  
N. Marcantonio ◽  
...  

Abstract This paper presents the results of a multi-scale microstructural characterization of micro-textured Ti-6Al-4V surfaces that are used in biomedical implants. The hierarchies of substructural and microstructural features associated with laser micro-texturing, polishing and surface blasting with alumina pellets are elucidated via atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and optical microscopy (OM). The nano-scale roughness profiles associated with the different surface textures are elucidated via AFM. Sub-micron precipitates and dislocation substructures associated with wrought processing and laser processing are revealed by TEM. Micro- and meso-scale images of the groove structures are then discussed using OM and SEM. The implications of the results are discussed for the optimization of laser processing schemes for the fabrication of micro-textured surfaces that will facilitate the self organization of proteins, and the attachment of mammalian cells to the Ti-6Al-4V surfaces in biomedical implants.


2011 ◽  
Vol 110 (7) ◽  
pp. 073514 ◽  
Author(s):  
Benedikt Haas ◽  
Andreas Beyer ◽  
Wiebke Witte ◽  
Tobias Breuer ◽  
Gregor Witte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document