nickel metal
Recently Published Documents


TOTAL DOCUMENTS

987
(FIVE YEARS 209)

H-INDEX

57
(FIVE YEARS 10)

2022 ◽  
Vol 213 ◽  
pp. 110339
Author(s):  
Youping Xiao ◽  
Pingmei Ming ◽  
Xinmin Zhang ◽  
Yanan Hou ◽  
Liqun Du ◽  
...  

Author(s):  
Tan Chong Chiat ◽  
◽  
Khairul Anuar Mohamad ◽  
Afishah Alias ◽  
Mohd Shafiee Mohd Sanip ◽  
...  

Due to the increase in demand for electric vehicles (EV) in recent years, the lack of EV charging stations and different EVs’ battery types are causing inconvenience to the user. The paper presents modeling and simulation of the grid-connected EV charging station system using MATLAB Simulink platform. The model consists of LCL filter, inverter, and battery charger. The inverter is regulated by a dq-frame that synchronizes with a phase-locked loop (PLL) to convert a three-phase alternating current (AC) source to a direct current (DC) source. Futhermore, lead acid (Pb-acid), lithium-ion (Li-ion), nickel-cadmium (Ni-Cd), and nickel metal hydride (Ni-MH) were tested and their performances were evaluated using the simulated EV charging station. All simulations were carried out and tested in the MATLAB Simulink platform. The results showed that Li-ion battery reaches the highest state-of-charge (SOC) value which is 51.66%, Pb-acid is 51.60%. Ni-MH is 51.55%, and Ni-Cd is 51.47% within 60s. The voltage values are 226.0V, 225.2V, 220.8V, and 220.2V for Pb-acid, Ni-MH, Ni-Cd and Li-ion, respectively. The findings revealed that the lithium ion is the most suitable for the use of EV since it had the fastest charging and slowest to reach its maximum threshold value of charging voltage.


2021 ◽  
Author(s):  
R Mohanreddy ◽  
B M Praveen ◽  
A Alhadhrami

Abstract Pure nickel (Ni) coating and nickel – vanadium pentoxide (Ni-V2O5) nanocomposite coatings have been developed on mild steel substrates by direct current (DC) & pulse current (PC) methods of electrodeposition using sulfamate electrolyte bath by optimizing all the suitable parameters. The surface morphology and texture characterization of pure Ni coating and Ni-V2O5nanocomposite coatings were analyzed by spectroscopic techniques such as Scanning Electron Microscopy (SEM) equipped with an attachment for Energy Dispersive Spectrometry (EDS) & X-ray Diffraction (XRD) spectroscopy analysis. The SEM study confirmed surface morphology of the pure Ni coating was changed by the incorporation of V2O5 nanoparticles in the nickel metal matrix and chemical composition of all the coatings was determined by EDS. XRD study proved highly corrosion resistant nanocomposites show preferred orientation towards (111) plane. The corrosion rate of all the coatings was investigated in 3.5% corrosive medium using electrochemical techniques such as Tafel extrapolation and AC impedance. The coatings developed by PC show enhanced corrosion resistance behavior compare to coatings developed by DC. The 0.125g/L Ni-V2O5nanocomposite coating obtained by PC show more widened semicircle with high Rp value and has more positive shift with high corrosion resistance during AC impedance and Tafel extrapolation analysis respectively. The coatings developed by PC showed improved micro hardness compare to coatings developed by DC during micro hardness testing of all the coatings.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 34
Author(s):  
Manis Kumar Jha ◽  
Pankaj Kumar Choubey ◽  
Om Shankar Dinkar ◽  
Rekha Panda ◽  
Rajesh Kumar Jyothi ◽  
...  

Nickel metal hydride (NiMH) batteries are extensively used in the manufacturing of portable electronic devices as well as electric vehicles due to their specific properties including high energy density, precise volume, resistance to overcharge, etc. These NiMH batteries contain significant amounts of rare earth metals (REMs) along with Co and Ni which are discarded due to illegal dumping and improper recycling practices. In view of their strategic, economic, and industrial importance, and to mitigate the demand and supply gap of REMs and the limited availability of natural resources, it is necessary to explore secondary resources of REMs. Therefore, the present paper reports a feasible hydrometallurgical process flowsheet for the recovery of REMs and valuable metals from spent NiMH batteries. More than 90% dissolution of REMs (Nd, Ce and La) was achieved using 2 M H2SO4 at 75 °C in 60 min in the presence of 10% H2O2 (v/v). From the obtained leach liquor, the REMs, such as Nd and Ce, were recovered using 10% PC88A diluted in kerosene at eq. pH 1.5 and O/A ratio 1/1 in two stages of counter current extraction. La of 99% purity was selectively precipitated from the leach liquor in the pH range of 1.5 to 2.0, leaving Cu, Ni and Co in the filtrate. Further, Cu and Ni were extracted with LIX 84 at equilibrium pH 2.5 and 5, leaving Co in the raffinate. The developed process flow sheet is feasible and has potential for industrial exploitation after scale-up/pilot trails.


2021 ◽  
Author(s):  
Jianguo liu ◽  
Jiangmin Sun ◽  
Longlong Ma

The development of high efficiency, excellent selectivity, and super activity metal catalyst for chemical selective hydrogenation of alkynes to olefin is of great significance in the field of the chemical industry. At the same time, the development of a large number of available base metal catalysts for organic conversion remains an important objective of chemical research. Herein, we report a facile preparation of a simple, high catalytic activity, environmentally friendly, and inexpensive biomass carbon material supported nano-nickel catalyst from lignin residue. The entire preparation process of the catalyst is simple, reliable, economical, and environmentally friendly, which provides a potential utilization prospect for large-scale industrial applications of biomass-based carbon material catalysts. Biomass-based lignin residues can not only reduce the high oxidation state of nickel ions into nickel nanoparticles by the in-situ reducing gas generated during the calcination process, but the mesoporous structure of lignin residue also promotes the adsorption of nickel metal, which greatly improved the catalytic activity of biomass-based Ni-based catalysts. The simple synthetic green, cost-effective and sustainable biomass-based Ni-based catalyst shows good performance in the selective hydrogenation of phenylacetylene, reaching 97.2% conversion and 84.3% styrene selectivity, respectively.


Author(s):  
Kouji Maeda ◽  
Shinji Yae ◽  
Naoki Fukumuro ◽  
Kenji Iimura ◽  
Ayumu Matsumoto

Abstract A nickel-metal hydride (Ni–MH) prototype battery completely immersed in an aqueous electrolyte solution of KOH under high pressure was fabricated to examine the effects of high pressure on the quality of Ni–MH batteries. The small battery cell comprised positive and negative electrode materials, as used in electric vehicles, and an Ag/AgO reference electrode. The electric capacity of the Ni–MH battery was measured at different temperatures and pressures with small currents and charge/discharge voltages of 1.6 – 1.0 V. High pressures were found to clearly and effectively enhance the electric capacity of the Ni–MH battery at larger currents. The considerable effect of high pressure on the Ni–MH battery was elucidated by the change in internal resistance during the charge/discharge cycle life experiment, indicating that the voltage of the positive electrode did not appreciably change at a high pressure compared to that of the negative electrode. Moreover, the use of large currents in rapid charge/discharge cycle tests at high pressures of up to 30 MPa resulted in charge/discharge cycles that were five times faster and a quick recovery of capacity was achieved in the 0.5 – 2.1 V range.


2021 ◽  
pp. 2102866
Author(s):  
Teresa Páez ◽  
FeiFei Zhang ◽  
Miguel Ángel Muñoz ◽  
Lara Lubian ◽  
Shibo Xi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document