Use of a high X-ray flux instrument for a mineral: X-ray powder diffraction pattern of CaMg(CO3)2

1998 ◽  
Vol 13 (4) ◽  
pp. 216-221 ◽  
Author(s):  
Yoshikazu Suzuki ◽  
Peter E. D. Morgan ◽  
Koichi Niihara

The usefulness of a high X-ray flux instrument to improve the accuracy of a powder diffraction pattern is demonstrated. In this case, very weak reflections of a well-characterized and well-known natural mineral can be detected by an often-used X-ray rotating anode diffractometer. High purity natural dolomite, CaMg(CO3)2, for example, was used to produce a slightly more comprehensive indexed X-ray powder diffraction. The powder pattern obtained in this study was compared with that of the reported high quality PDF pattern (36-426, with “*” mark) and that of a calculated pattern derived from single crystal structure data. A very weak 003 reflection at low angle and many weak reflections at high angles, not reported in the PDF pattern, were successfully identified using this high-power X-ray instrument. Unit cell parameters were determined to be a=4.8090±0.0001 Å and c=16.0182±0.0003 Å, which were in good agreement with the extant PDF pattern. Accuracy of the relative intensities between the measured and calculated patterns was apparently somewhat improved in this study, probably also attained through less preferred orientation and the higher purity of the sample used.

2005 ◽  
Vol 20 (3) ◽  
pp. 203-206 ◽  
Author(s):  
M. Grzywa ◽  
M. Różycka ◽  
W. Łasocha

Potassium tetraperoxomolybdate (VI) K2[Mo(O2)4] was prepared, and its X-ray powder diffraction pattern was recorded at low temperature (258 K). The unit cell parameters were refined to a=10.7891(2) Å, α=64.925(3)°, space group R−3c (167), Z=6. The compound is isostructural with potassium tetraperoxotungstate (VI) K2[W(O2)4] (Stomberg, 1988). The sample of K2[Mo(O2)4] was characterized by analytical investigations, and the results of crystal structure refinement by Rietveld method are presented; final RP and RWP are 9.79% and 12.37%, respectively.


2021 ◽  
Vol 59 (6) ◽  
pp. 1865-1886
Author(s):  
Andrew M. McDonald ◽  
Doreen E. Ames ◽  
Ingrid M. Kjarsgaard ◽  
Louis J. Cabri ◽  
William Zhe ◽  
...  

ABSTRACT Marathonite, Pd25Ge9, and palladogermanide, Pd2Ge, are two new platinum-group minerals discovered in the Marathon deposit, Coldwell Complex, Ontario, Canada. Marathonite is trigonal, space group P3, with a 7.391(1), c 10.477(2) Å, V 495.6(1) Å3, Z = 1. The six strongest lines of the X-ray powder-diffraction pattern [d in Å (I)(hkl)] are: 2.436(10)(014,104,120,210), 2.374(29)(023,203,121,211), 2.148(100)(114,030), 1.759(10)(025,205,131,311), 1.3605(13)(233,323,036,306), and 1.2395(14)(144,414,330). Associated minerals include: vysotskite, Au-Ag alloy, isoferroplatinum, Ge-bearing keithconnite, majakite, coldwellite, ferhodsite-series minerals (cuprorhodsite-ferhodsite), kotulskite and mertieite-II, the base-metal sulfides, chalcopyrite, bornite, millerite and Rh-bearing pentlandite, oberthürite and torryweiserite, and silicates including a clinoamphibole and a Fe-rich chlorite-group mineral. Rounded, elongated grains of marathonite are up to 33 × 48 μm. Marathonite is white, but pinkish brown compared to palladogermanide and bornite. No streak or microhardness could be measured. The mineral shows no discernible pleochroism, bireflectance, or anisotropy. The reflectance values (%) in air for the standard COM wavelengths are: 40.8 (470 nm), 44.1 (546 nm), 45.3 (589 nm), and 47.4 (650 nm). The calculated density is 10.933 g/cm3, determined using the empirical formula and the unit-cell parameters from the refined crystal structure. The average result (n = 19) using energy-dispersive spectrometry is: Si 0.11, S 0.39, Cu 2.32, Ge 18.46, Pd 77.83, Pt 1.10, total 100.22 wt.%, corresponding to the empirical formula (based on 34 apfu): (Pd23.82Cu1.19Pt0.18)Σ25.19(Ge8.28S0.40Si0.13)∑8.81 and the simplified formula is Pd25Ge9. The name is for the town of Marathon, Ontario, Canada, after which the Marathon deposit (Coldwell complex) is named. Results from electron backscattered diffraction show that palladogermanide is isostructural with synthetic Pd2Ge. Based on this, palladogermanide is considered to be hexagonal, space group , with a 6.712(1), c 3.408(1) Å, V 133.0(1), Z = 3. The seven strongest lines of the X-ray powder-diffraction pattern calculated for the synthetic analogue [d in Å (I)(hkl)] are: 2.392(100)(111), 2.211(58)(201), 2.197(43)(210), 1.937(34)(300), 1.846(16)(211), 1.7037(16)(002), and 1.2418(18)(321). Associated minerals are the same as for marathonite. Palladogermanide occurs as an angular, anhedral grain measuring 29 × 35 μm. It is white, but grayish-white when compared to marathonite, bornite, and chalcopyrite. Compared to zvyagintsevite, palladogermanide is a dull gray. No streak or microhardness could be measured. The mineral shows no discernible pleochroism, bireflectance, or anisotropy. The reflectance values (%) in air for the standard COM wavelengths for Ro and Ro' are: 46.8, 53.4 (470 nm), 49.5, 55.4 (546 nm), 50.1, 55.7 (589 nm), and 51.2, 56.5 (650 nm). The calculated density is 10.74 g/cm3, determined using the empirical formula and the unit-cell parameters from synthetic Pd2Ge. The average result (n = 14) using wavelength-dispersive spectrometry is: Si 0.04, Fe 0.14, Cu 0.06, Ge 25.21, Te 0.30, Pd 73.10, Pt 0.95, Pb 0.08, total 99.88 wt.%, corresponding (based on 3 apfu) to: (Pd1.97Pt0.01Fe0.01)Σ1.99(Ge1.00Te0.01)∑1.01 or ideally, Pd2Ge. The name is for its chemistry and relationship to palladosilicide. The crystal structure of marathonite was solved by single-crystal X-ray diffraction methods (R = 7.55, wR2 = 19.96 %). It is based on two basic modules, one ordered and one disordered, that alternate along [001]. The ordered module, ∼7.6 Å in thickness, is based on a simple Pd4Ge3 unit cross-linked by Pd atoms to form a six-membered trigonal ring that in turn gives rise to a layered module containing fully occupied Pd and Ge sites. This alternates along [001] with a highly disordered module, ∼3 Å in thickness, composed of a number of partially occupied Pd and Ge sites. The combination of sites in the ordered and disordered modules give the stoichiometric formula Pd25Ge9. The observed paragenetic sequence is: bornite → marathonite → palladogermanide. Phase equilibria studies in the Pd-Ge system show Pd25Ge9 (marathonite) to be stable over the range of 550–970 °C and that Pd2Ge (palladogermanide) is stable down to 200 °C. Both minerals are observed in an assemblage of clinoamphibole, a Fe-rich, chlorite-group mineral, and fragmented chalcopyrite, suggesting physical or chemical alteration, possibly both. Palladogermanide is also found associated with a magnetite of near end-member composition, potentially indicating a relative increase in fO2. Both minerals are considered to have developed at temperatures of 500–600 °C, under conditions of low fS2 and fO2, given the requirements needed to fractionate, concentrate, and form minerals with Ge-dominant chemistries.


2018 ◽  
Vol 64 (6) ◽  
pp. 548
Author(s):  
Gustavo Marroquin ◽  
Gerzon E. Delgado ◽  
Pedro Grima-Gallardo ◽  
Miguel Quintero

The crystal structure of the quaternary compound CuVInSe3 belonging to the system (CuInSe2)1-x(VSe)x with x= ½, was analyzed using X-ray powder diffraction data. This material was synthesized by the melt and anneal method and crystallizes in the tetragonal space group P2c (Nº 112), with unit cell parameters a = 5.7909(4) Å, c = 11.625(1) Å, V = 389.84(5) Å3. The Rietveld refinement of 25 instrumental and structural variables led to Rexp = 6.6 %, Rp = 8.7 %, Rwp = 8.8 % and S = 1.3 for 4501 step intensities and 153 independent reflections. This compound has a normal adamantane structure and is isostructural with CuFeInSe3. The DTA indicates that this compound melts at 1332 K.


2003 ◽  
Vol 18 (1) ◽  
pp. 47-49
Author(s):  
J. C. Poveda ◽  
J. A. Henao ◽  
J. A. Pinilla ◽  
V. V. Kouznetsov ◽  
C. Ochoa

The X-ray powder diffraction pattern for a bridgehead heterocyclic system was determined. 2-exo-(β-pyridyl)-6-exo-phenyl-7-oxa-1-azabicyclo[2.2.1]heptane, C16H16N2O, is triclinic with refined unit cell parameters a=1.1012(2), b=1.3950(2), c=1.0074(3) nm, α=111.09(2)°, β=104.97(2)°, γ=77.38(2)°, V=1.3813(3) nm3, Z=4, and Dx=1.212 g/cm3 with space group P-1 (No. 2).


1989 ◽  
Vol 4 (1) ◽  
pp. 34-35 ◽  
Author(s):  
Diano Antenucci ◽  
Francois Fontan ◽  
Andre-Mathieu Fransolet

AbstractWolfeite (Fe0.59Mn0.40Mg0.01)2PO4(OH) from the Hagendorf-Sud pegmatite, Bavaria, Federal Republic of Germany, yields unit-cell parameters of: a = 12.319(1), b = 13.280(2), c = 9.840(1) Å and β = 108° 24(1). Dmeas. = 3.82(2); Dcalc. = 3.88. An indexed powder diffraction pattern is given.


2018 ◽  
Vol 33 (1) ◽  
pp. 62-65
Author(s):  
Martin Etter

Commercially available trisodium hexachlororhodate (Na3RhCl6) was dehydrated and characterized by laboratory X-ray powder diffraction. The crystal structure is isostructural to the Na3CrCl6 structure type with space group P$\bar 31$c. Unit-cell parameters are a = 6.8116(1) Å, c = 11.9196(2) Å, V = 478.95(2) Å3, and Z = 2.


2016 ◽  
Vol 31 (1) ◽  
pp. 59-62
Author(s):  
Martin Etter ◽  
Maximilian J. Krautloher ◽  
Nakheon Sung ◽  
Joel Bertinshaw ◽  
Bumjoon Kim ◽  
...  

A new non-stoichiometric calcium ruthenate [Ca4−xRuO6−x with x = 1.17(1)] was synthesized by the flux growth method and characterized by the X-ray powder diffraction. The crystal structure is isostructural to the K4CdCl6 type with space group R$\bar 3$c. Unit-cell parameters are a = 9.2881(1), c = 11.1634(2) Å, V = 834.03(3) Å3, and Z = 6.


2019 ◽  
Vol 65 (4 Jul-Aug) ◽  
pp. 355 ◽  
Author(s):  
G. E. Delgado ◽  
And V. Sagredo

The crystal structure of the quaternary compound Cu2NiGeS4, belonging to the system I2-II-IV-VI4, was characterized by Rietveld refinement using X-ray powder diffraction data. This material crystallize with a stannite structure in the tetragonal space group I2m (Nº 121), Z = 2, unit cell parameters a = 5.3384(1) Å, c = 10.5732(3) Å, V = 301.32(3) Å3, acknowledged as a normal valence adamantane-structure.


2021 ◽  
Vol 29 (2) ◽  
pp. 241-248
Author(s):  
Jiří Sejkora ◽  
Roman Gramblička

The zýkaite samples were found at abandoned Lehnschafter mine near Mikulov in the Krušné hory Mts. (Czech Republic). It occurs as irregular white to light greenish rounded to spherical aggregates up to 1.5 cm in size composed of tiny acicular crystals up to 5 - 10 μm in length. Its empirical formula can be expressed as (Fe3.79Al0.02)Σ3.81[(AsO4)2.66(PO4)0.20(SiO4)0.07]Σ2.93 (SO4)1.07(OH)0.44·15H2O (mean of 3 spot analyzes; on the basis of As+P+S+Si = 4 apfu).Zýkaite is probably monoclinic, with the unit-cell parameters refined from X-ray powder diffraction data: a 21.195(8), b 7.052(2), c 36.518(17) Å, β 91.07(2)° and V 5458(2) Å3. Raman spectroscopy documented the presence of both (AsO4)3- and (SO4)2- units in the crystal structure of zýkaite. Multiple Raman bands connected with vibrations of water molecules and (AsO4)3- groups indicate the presence of more structurally non-equivalent these groups in the crystal stucture of zýkaite.


2014 ◽  
Vol 29 (4) ◽  
pp. 361-365 ◽  
Author(s):  
Afef Ghouili ◽  
Jan Rohlicek ◽  
Taïcir Ben Ayed ◽  
Rached Ben Hassen

4-hydroxy-3-methoxyphenyl-4-hydroxycoumarin chalcone (C19H14O6) was synthesized by the Claisen–Schmidt reaction with the condensation of 3-acetyl-4-hydroxycoumarin with 4-hydroxy-3-methoxybenzaldehyde (vanillin). The new compound was characterized by Fourier transform infrared microscopy, UV–vis 1H, and 13C NMR spectroscopy and its crystal structure was ab initio determined from laboratory X-ray powder diffraction data. The crystal structure is monoclinic with unit-cell parameters a = 14.3181(4), b = 8.040 71(9), c = 13.5524(3), β = 100.3559(13)°, V = 1534.84(6) Å3, and space group P21/c.


Sign in / Sign up

Export Citation Format

Share Document