calculated density
Recently Published Documents


TOTAL DOCUMENTS

383
(FIVE YEARS 90)

H-INDEX

19
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 186
Author(s):  
Enrico Storti ◽  
Jens Fruhstorfer ◽  
Bruno Luchini ◽  
Adéla Jiříčková ◽  
Ondřej Jankovský ◽  
...  

Carbon-bonded alumina refractories offer excellent thermal shock performance but are lacking in terms of mechanical strength. In the present contribution, the influence of the particle packing and the addition of graphene oxide (GO) to carbon-bonded alumina refractories on the physical and mechanical properties before and after thermal shock was investigated. Coarse tabular alumina grains were coated by a GO suspension and used to prepare dry-pressed compacts. The included graphite fraction (15 wt%) was either regarded as a lubricating matrix component or as a quasi-spherical component of a calculated density-optimized aggregate size distribution. During coking, the GO was reduced to thermally reduced graphene. The porosity, true density and thermal shock behavior in terms of the cold modulus of rupture (CMOR) and Young’s modulus were compared. Samples with a higher density were obtained when the irregularly shaped graphite was considered as the matrix component (lubricant). The results showed that the use of GO had a positive impact on the mechanical properties of the graphene-reinforced Al2O3–C refractories, especially in the case of a less optimized packing, due to the bridging of delamination gaps. In addition, the thermal shock only had a minor impact on the Young’s modulus and CMOR values of the samples. SEM investigation revealed very similar microstructures in coked as well as thermally shocked samples.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1420
Author(s):  
Andrei Y. Barkov ◽  
Nadezhda D. Tolstykh ◽  
Nobumichi Tamura ◽  
Robert F. Martin ◽  
Andrew M. McDonald ◽  
...  

Ferrotorryweiserite, Rh5Fe10S16, occurs as small grains (≤20 µm) among droplet-like inclusions (up to 50 μm in diameter) of platinum-group minerals (PGM), in association with oberthürite or Rh-bearing pentlandite, laurite, and a Pt-Pd-Fe alloy (likely isoferroplatinum and Fe-Pd-enriched platinum), hosted by placer grains of Os-Ir alloy (≤0.5 mm) in the River Ko deposit. The latter is a part of the Sisim placer zone, which is likely derived from ultramafic units of the Lysanskiy layered complex, southern Krasnoyarskiy kray, Russia. The mineral is opaque, gray to brownish gray in reflected light, very weakly bireflectant, not pleochroic to weakly pleochroic (grayish to light brown tints), and weakly anisotropic. The calculated density is 5.93 g·cm–3. Mean results (and ranges) of four WDS analyses are: Ir 18.68 (15.55–21.96), Rh 18.34 (16.32–20.32), Pt 0.64 (0.19–1.14), Ru 0.03 (0.00–0.13), Os 0.07 (0.02–0.17), Fe 14.14 (13.63–14.64), Ni 13.63 (12.58–14.66), Cu 4.97 (3.42–6.41), Co 0.09 (0.07–0.11), S 29.06 (28.48–29.44), and total 99.66 wt. %. They correspond to the following formula calculated for a total of 31 atoms per formula unit: (Rh3.16Ir1.72Pt0.06Ru0.01Os0.01)Σ4.95(Fe4.48Ni4.11Cu1.38Co0.03)Σ10.00S16.05. The results of synchrotron micro-Laue diffraction studies indicate that ferrotorryweiserite is trigonal; its probable space group is Rm (#166) based on its Ni-analog, torryweiserite. The unit-cell parameters refined from 177 reflections are a = 7.069 (2) Å, c = 34.286 (11) Å, V = 1484 (1) Å3, and Z = 3. The c:a ratio is 4.8502. The strongest eight peaks in the X-ray diffraction pattern derived from results of micro-Laue diffraction study [d in Å(hkil)(I)] are 2.7950 (205) (100); 5.7143 (0006) (60); 1.7671 (220) (44.4); 3.0486 (201) (39.4); 5.7650 (102) (38.6); 2.5956 (207) (37.8); 3.0058 (116) (36.5); and 1.5029 (412) (35.3). Ferrotorryweiserite and the associated PGM crystallized from microvolumes of residual melt at late stages of crystallization of grains of Os- and Ir-dominant alloys occurred in lode zones of chromitites of the Lysanskiy layered complex. In a particular case, the residual melt is disposed peripherally around a core containing a disequilibrium association of magnesian olivine (Fo72.9–75.6) and albite (Ab81.6–86.4), with the development of skeletal crystals of titaniferous augite: Wo40.8–43.2En26.5–29.3Fs20.3–22.6Aeg6.9–9.5 (2.82–3.12 wt. % TiO2). Ferrotorryweiserite represents the Fe-dominant analog of torryweiserite. We also report occurrences of ferrotorryweiserite in the Marathon deposit, Coldwell Complex, Ontario, Canada, and infer the existence of the torryweiserite–ferrotorryweiserite solid solution in other deposits and complexes.


Author(s):  
Lindsey B Amerine ◽  
Tyler Pasour ◽  
Shannon “JJ” Johnson ◽  
Jordyn P Higgins ◽  
Jacqueline Pyle ◽  
...  

Abstract Purpose To determine the density variation between (1) the measured density and manually calculated density, (2) density variation of different lots, and (3) density variation of different drug manufacturers in order to support institutions using gravimetric compounding methods. Summary Seventeen sterile injectable ingredient (drug) vials frequently used to make compounded sterile products (CSPs) were identified based on the ability to ensure that for each drug there were vials produced by 2 different manufacturers and 2 lots produced by the same manufacturer. Each drug’s density was measured using a density meter and by manual calculation using the institution’s density formula. Density differences were compared between the 2 different methods. Overall, the average drug density difference between the measured versus calculated density was determined to be 0.022. Further analysis revealed the average difference between the different lot numbers of the same manufacturers was 0.005 for the nonhazardous drugs and 0.0001 for the hazardous drugs. The average difference between the different manufacturers of the same drug was determined to be 0.008 for the nonhazardous drugs and 0.001 for hazardous drugs. Conclusion No clinically meaningful difference exists when manually calculating a drug’s density compared to measuring a drug’s density using a density meter. In addition, there does not appear to be a sizeable density variation between the same drugs in separate lots or produced by different manufacturers.


2021 ◽  
Vol 59 (6) ◽  
pp. 1833-1863
Author(s):  
Andrew M. McDonald ◽  
Ingrid M. Kjarsgaard ◽  
Louis J. Cabri ◽  
Kirk C. Ross ◽  
Doreen E. Ames ◽  
...  

ABSTRACT Oberthürite, Rh3(Ni,Fe)32S32, and torryweiserite, Rh5Ni10S16, are two new platinum-group minerals discovered in a heavy-mineral concentrate from the Marathon deposit, Coldwell Complex, Ontario, Canada. Oberthürite is cubic, space group , with a 10.066(5) Å, V 1019.9(1) Å3, Z = 1. The six strongest lines of the X-ray powder-diffraction pattern [d in Å (I)(hkl)] are: 3.06(100)(311), 2.929(18)(222), 1.9518(39)(115,333), 1.7921(74)(440), 1.3184(15)(137,355) and 1.0312(30)(448). Associated minerals include: vysotskite, Au-Ag alloy, isoferroplatinum, Ge-bearing keithconnite, majakite, coldwellite, ferhodsite-series minerals (cuprorhodsite–ferhodsite), kotulskite, and mertieite-II, and the base-metal sulfides, chalcopyrite, bornite, millerite, and Rh-bearing pentlandite. Grains of oberthürite are up to 100 × 100 μm and the mineral commonly develops in larger composites with coldwellite, isoferroplatinum, zvyagintsevite, Rh-bearing pentlandite, and torryweiserite. The mineral is creamy brown compared to coldwellite and bornite, white when compared to torryweiserite, and gray when compared chalcopyrite and millerite. No streak or microhardness could be measured. The mineral shows no discernible pleochroism, bireflectance, or anisotropy. The reflectance values (%) in air for the standard COM wavelengths are: 36.2 (470 nm), 39.1 (546 nm), 40.5 (589 nm), and 42.3 (650 nm). The calculated density is 5.195 g/cm3, determined using the empirical formula and the unit-cell parameter from the refined crystal structure. The average result (n = 11) using energy-dispersive spectrometry is: Rh 10.22, Ni 38.83, Fe 16.54, Co 4.12, Cu 0.23 S 32.36, total 100.30 wt.%, which corresponds to (Rh2Ni0.67Fe0.33)Σ3.00(Ni19.30Fe9.09Co2.22Rh1.16Cu0.12)∑31.89S32.11, based on 67 apfu and crystallochemical considerations, or ideally, Rh3Ni32S32. The name is for Dr. Thomas Oberthür, a well-known researcher on alluvial platinum-group minerals, notably those found in deposits related to the Great Dyke (Zimbabwe) and the Bushveld complex (Republic of South Africa). Torryweiserite is rhombohedral, space group , with a 7.060(1), c 34.271(7) Å, V 1479.3(1), Z = 3. The six strongest lines of the X-ray powder-diffraction pattern [d in Å (I)(hkl)] are: 3.080(33)(021), 3.029(58)(116,0110), 1.9329(30)(036,1115,1210), 1.7797(100)(220,0216), 1.2512(49)(0416), and 1.0226(35)(060,2416,0232). Associated minerals are the same as for oberthürite. The mineral is slightly bluish compared to oberthürite, gray when compared to chalcopyrite, zvyagintsevite, and keithconnite, and pale creamy brown when compared to bornite and coldwellite. No streak or microhardness could be measured. The mineral shows no discernible pleochroism, bireflectance, or anisotropy. The reflectance values (%) in air for the standard COM wavelengths are: 34.7 (470 nm), 34.4 (546 nm), 33.8 (589 nm), and 33.8 (650 nm). The calculated density is 5.555 g/cm3, determined using the empirical formula and the unit-cell parameters from the refined crystal structure. The average result (n = 10) using wavelength-dispersive spectrometry is: Rh 28.02, Pt 2.56, Ir 1.98, Ru 0.10, Os 0.10, Ni 17.09, Fe 9.76, Cu 7.38, Co 1.77 S 30.97, total 99.73 wt.%, which corresponds to (Rh4.50Pt0.22Ir0.17Ni0.08Ru0.02Os0.01)∑5.00(Ni4.73Fe2.89Cu1.92Co0.50)Σ10.04S15.96, based on 31 apfu and crystallochemical considerations, or ideally Rh5Ni10S16. The name is for Dr. Thorolf (‘Torry') W. Weiser, a well-known researcher on platinum-group minerals, notably those found in deposits related to the Great Dyke (Zimbabwe) and the Bushveld complex (Republic of South Africa). Both minerals have crystal structures similar to those of pentlandite and related minerals: oberthürite has two metal sites that are split relative to that in pentlandite, and torryweiserite has a layered structure, comparable, but distinct, to that developed along [111] in pentlandite. Oberthürite and torryweiserite are thought to develop at ∼ 500 °C under conditions of moderate fS2, through ordering of Rh-Ni-S nanoparticles in precursor Rh-bearing pentlandite during cooling. The paragenetic sequence of the associated Rh-bearing minerals is: Rh-bearing pentlandite → oberthürite → torryweiserite → ferhodsite-series minerals, reflecting a relative increase in Rh concentration with time. The final step, involving the formation of rhodsite-series minerals, was driven via by the oxidation of Fe2+ → Fe3+ and subsequent preferential removal of Fe3+, similar to the process involved in the conversion of pentlandite to violarite. Summary comments are made on the occurrence and distribution of Rh, minerals known to have Rh-dominant chemistries, the potential existence of both Rh3+ and Rh2+, and the crystallochemical factors influencing accommodation of Rh in minerals.


2021 ◽  
Vol 59 (6) ◽  
pp. 1865-1886
Author(s):  
Andrew M. McDonald ◽  
Doreen E. Ames ◽  
Ingrid M. Kjarsgaard ◽  
Louis J. Cabri ◽  
William Zhe ◽  
...  

ABSTRACT Marathonite, Pd25Ge9, and palladogermanide, Pd2Ge, are two new platinum-group minerals discovered in the Marathon deposit, Coldwell Complex, Ontario, Canada. Marathonite is trigonal, space group P3, with a 7.391(1), c 10.477(2) Å, V 495.6(1) Å3, Z = 1. The six strongest lines of the X-ray powder-diffraction pattern [d in Å (I)(hkl)] are: 2.436(10)(014,104,120,210), 2.374(29)(023,203,121,211), 2.148(100)(114,030), 1.759(10)(025,205,131,311), 1.3605(13)(233,323,036,306), and 1.2395(14)(144,414,330). Associated minerals include: vysotskite, Au-Ag alloy, isoferroplatinum, Ge-bearing keithconnite, majakite, coldwellite, ferhodsite-series minerals (cuprorhodsite-ferhodsite), kotulskite and mertieite-II, the base-metal sulfides, chalcopyrite, bornite, millerite and Rh-bearing pentlandite, oberthürite and torryweiserite, and silicates including a clinoamphibole and a Fe-rich chlorite-group mineral. Rounded, elongated grains of marathonite are up to 33 × 48 μm. Marathonite is white, but pinkish brown compared to palladogermanide and bornite. No streak or microhardness could be measured. The mineral shows no discernible pleochroism, bireflectance, or anisotropy. The reflectance values (%) in air for the standard COM wavelengths are: 40.8 (470 nm), 44.1 (546 nm), 45.3 (589 nm), and 47.4 (650 nm). The calculated density is 10.933 g/cm3, determined using the empirical formula and the unit-cell parameters from the refined crystal structure. The average result (n = 19) using energy-dispersive spectrometry is: Si 0.11, S 0.39, Cu 2.32, Ge 18.46, Pd 77.83, Pt 1.10, total 100.22 wt.%, corresponding to the empirical formula (based on 34 apfu): (Pd23.82Cu1.19Pt0.18)Σ25.19(Ge8.28S0.40Si0.13)∑8.81 and the simplified formula is Pd25Ge9. The name is for the town of Marathon, Ontario, Canada, after which the Marathon deposit (Coldwell complex) is named. Results from electron backscattered diffraction show that palladogermanide is isostructural with synthetic Pd2Ge. Based on this, palladogermanide is considered to be hexagonal, space group , with a 6.712(1), c 3.408(1) Å, V 133.0(1), Z = 3. The seven strongest lines of the X-ray powder-diffraction pattern calculated for the synthetic analogue [d in Å (I)(hkl)] are: 2.392(100)(111), 2.211(58)(201), 2.197(43)(210), 1.937(34)(300), 1.846(16)(211), 1.7037(16)(002), and 1.2418(18)(321). Associated minerals are the same as for marathonite. Palladogermanide occurs as an angular, anhedral grain measuring 29 × 35 μm. It is white, but grayish-white when compared to marathonite, bornite, and chalcopyrite. Compared to zvyagintsevite, palladogermanide is a dull gray. No streak or microhardness could be measured. The mineral shows no discernible pleochroism, bireflectance, or anisotropy. The reflectance values (%) in air for the standard COM wavelengths for Ro and Ro' are: 46.8, 53.4 (470 nm), 49.5, 55.4 (546 nm), 50.1, 55.7 (589 nm), and 51.2, 56.5 (650 nm). The calculated density is 10.74 g/cm3, determined using the empirical formula and the unit-cell parameters from synthetic Pd2Ge. The average result (n = 14) using wavelength-dispersive spectrometry is: Si 0.04, Fe 0.14, Cu 0.06, Ge 25.21, Te 0.30, Pd 73.10, Pt 0.95, Pb 0.08, total 99.88 wt.%, corresponding (based on 3 apfu) to: (Pd1.97Pt0.01Fe0.01)Σ1.99(Ge1.00Te0.01)∑1.01 or ideally, Pd2Ge. The name is for its chemistry and relationship to palladosilicide. The crystal structure of marathonite was solved by single-crystal X-ray diffraction methods (R = 7.55, wR2 = 19.96 %). It is based on two basic modules, one ordered and one disordered, that alternate along [001]. The ordered module, ∼7.6 Å in thickness, is based on a simple Pd4Ge3 unit cross-linked by Pd atoms to form a six-membered trigonal ring that in turn gives rise to a layered module containing fully occupied Pd and Ge sites. This alternates along [001] with a highly disordered module, ∼3 Å in thickness, composed of a number of partially occupied Pd and Ge sites. The combination of sites in the ordered and disordered modules give the stoichiometric formula Pd25Ge9. The observed paragenetic sequence is: bornite → marathonite → palladogermanide. Phase equilibria studies in the Pd-Ge system show Pd25Ge9 (marathonite) to be stable over the range of 550–970 °C and that Pd2Ge (palladogermanide) is stable down to 200 °C. Both minerals are observed in an assemblage of clinoamphibole, a Fe-rich, chlorite-group mineral, and fragmented chalcopyrite, suggesting physical or chemical alteration, possibly both. Palladogermanide is also found associated with a magnetite of near end-member composition, potentially indicating a relative increase in fO2. Both minerals are considered to have developed at temperatures of 500–600 °C, under conditions of low fS2 and fO2, given the requirements needed to fractionate, concentrate, and form minerals with Ge-dominant chemistries.


2021 ◽  
pp. 1-6
Author(s):  
Liuqing Liang ◽  
Degui Li ◽  
Chenzhong Jia ◽  
Ming Qin

A ternary compound Al3CoNd2 was synthesized and its crystal structure parameters were determined by the Rietveld refinement method based on powder X-ray diffraction data. Results show that the compound crystallizes in the MgCu2-type structure (cubic Laves C15 phase, space group $Fd\bar{3}m$ ), with the lattice parameter of a = 7.8424(2) Ǻ, unit-cell volume of V = 482.33 Å3, and calculated density of Dcalc = 5.90 g.cm−3. The residual factors converge to Rp = 0.1024 and Rwp = 0.1287. The reference intensity ratio value obtained experimentally is 3.03. Magnetic susceptibility measurements indicate an agreement with the Curie–Weiss law in the temperature range of 385–450 K, and paramagnetic Curie temperature of θp = 379.9 K. Both rare-earth elements and cobalt ions contribute to the paramagnetic moment. The saturation magnetic moment and magnetic hysteresis loop were measured for the Al3CoNd2 compound at various temperatures. Results show that the saturation magnetic moment value decreases with an increase in temperature and the compound becomes a ferromagnet below the Curie temperature Tc.


Author(s):  
Huai-Yu Wang

Up to now, Schrödinger equation, Klein-Gordon equation (KGE) and Dirac equation are believed the fundamental equations of quantum mechanics. Schrödinger equation has a defect that there is no NKE solutions. Dirac equation has positive kinetic energy (PKE) and negative kinetic energy (NKE) branches. Both branches should have low momentum, or nonrelativistic, approximations: one is Schrödinger equation and the other is NKE Schrödinger equation. KGE has two problems: it is an equation of second time derivative, and calculated density is not definitely positive. To overcome the problems, it should be revised as PKE and NKE decoupled KGEs. The fundamental equations of quantum mechanics after the modification have at least two merits. They are of unitary in that everyone contains the first time derivative and are symmetric with respect to PKE and NKE. This reflects the symmetry of the PKE and NKE matters, as well as matter and dark matter, of our universe. The problems of one-dimensional step potentials are resolved by means of the modified fundamental equations for a nonrelativistic particle.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11992
Author(s):  
Asia O. Armstrong ◽  
Guy M.W. Stevens ◽  
Kathy A. Townsend ◽  
Annie Murray ◽  
Michael B. Bennett ◽  
...  

Manta rays forage for zooplankton in tropical and subtropical marine environments, which are generally nutrient-poor. Feeding often occurs at predictable locations where these large, mobile cartilaginous fishes congregate to exploit ephemeral productivity hotspots. Investigating the zooplankton dynamics that lead to such feeding aggregations remains a key question for understanding their movement ecology. The aim of this study is to investigate the feeding environment at the largest known aggregation for reef manta rays Mobula alfredi in the world. We sampled zooplankton throughout the tidal cycle, and recorded M. alfredi activity and behaviour, alongside environmental variables at Hanifaru Bay, Maldives. We constructed generalised linear models to investigate possible relationships between zooplankton dynamics, environmental parameters, and how they influenced M. alfredi abundance, behaviour, and foraging strategies. Zooplankton biomass changed rapidly throughout the tidal cycle, and M. alfredi feeding events were significantly related to high zooplankton biomass. Mobula alfredi switched from non-feeding to feeding behaviour at a prey density threshold of 53.7 mg dry mass m−3; more than double the calculated density estimates needed to theoretically meet their metabolic requirements. The highest numbers of M. alfredi observed in Hanifaru Bay corresponded to when they were engaged in feeding behaviour. The community composition of zooplankton was different when M. alfredi was feeding (dominated by copepods and crustaceans) compared to when present but not feeding (more gelatinous species present than in feeding samples). The dominant zooplankton species recorded was Undinula vulgaris. This is a large-bodied calanoid copepod species that blooms in oceanic waters, suggesting offshore influences at the site. Here, we have characterised aspects of the feeding environment for M. alfredi in Hanifaru Bay and identified some of the conditions that may result in large aggregations of this threatened planktivore, and this information can help inform management of this economically important marine protected area.


Author(s):  
Ritsuro Miyawaki ◽  
Koichi Momma ◽  
Satoshi Matsubara ◽  
Takashi Sano ◽  
Masako Shigeoka ◽  
...  

ABSTRACT Hydroxykenopyrochlore, (□,Ce,Ba)2(Nb,Ti)2O6(OH,F), occurs in a weathered Nb-ore from alkaline-carbonatite complexes and pegmatites of the Brazilian shield mined by Compania Brasileira de Metalurgia e Mineração (CBMM), Araxá, Minas Gerais, Brazil. The mineral is a product of alkali metasomatism. It occurs as parts of granular grains up to 0.1 mm in size in association with Ba-bearing hydrokenopyrochlore. Hydroxykenopyrochlore is lemon yellow to yellow in color, non-fluorescent, and brittle. The hardness is 4½ on the Mohs scale. The calculated density is 4.36 g/cm3. It is cubic, Fd–3m, with cell parameters a 10.590(5) Å, V = 1187.6(10) Å3, and Z = 2. The strongest seven lines in the powder XRD pattern [d in Å (I/I0) hkl] are 6.06 (49) 111, 3.18 (27) 311, 3.05 (100) 222, 2.64 (29) 400, 1.870 (56) 440, 1.594 (50) 622, 1.213 (15) 662, and 1.182 (13) 840. The empirical formula derived from electron-microprobe analyses is [□1.117Ce0.532Nd0.035La0.021Pr0.010Sm0.003Y0.002Ba0.101Ca0.030Pb0.004Th0.061U0.007K0.040Na0.036]Σ2(Nb1.368Ti0.325P0.095Fe0.091Al0.082Zr0.039)Σ2[O4.719(OH)1.281]Σ6[(OH)0.846F0.154]. Hydroxykenopyrochlore is a member of the pyrochlore supergroup (class 4.DH.15 of Strunz & Nickel; class 8.2.1. of Dana). It is the vacancy-dominant analogue of hydroxycalciopyrochlore, (Ca,Na,U,□)2(Nb,Ti)2O6(OH), and the Nb-dominant analogue of hydroxykenomicrolite, (□,Na,Sb3+)2Ta2O6(OH), and of hydroxykenoelsmoreite, (□,Pb)2(W,Fe3+,Al)2(O,OH)6(OH).


Microscopy ◽  
2021 ◽  
Author(s):  
Masami Terauchi ◽  
Naoya Umemoto ◽  
Yohei Sato ◽  
Masaki Ageishi ◽  
An-Pang Tsai

Abstract Phase diagram of Au-Si binary alloy system shows a large drop of melting temperature of about 1000 K compared with that of Si at a composition of Au:Si=81:19, where the melting temperature is about 636 K. Mixing of Au and Si below the melting temperature was observed by transmission electron microscopy experiment and found the mixed region show a diffraction pattern of a diffuse ring intensity indicating an amorphous structure of the mixed area. Si L-emission spectra, which reflects the energy state of bonding electrons of Si atom, of molten Au81Si19 alloy was measured for the first time to investigate the energy state of valence electrons of Si. The Si L-emission spectrum showed a characteristic loss of L1 peak, which is related to sp3 directional bonding in crystalline Si. The intensity profile is also different from that of molten Si reported. This suggests a characteristic atomic arrangement exist in the molten state. The intensity profile also indicated a small density of state in the molten state at Fermi energy. The obtained spectrum was compared with the calculated density of state of possible crystal structures reported. The comparison suggested that Si atoms are surrounded by 8 Au atoms in the molten state of Au81Si19 alloy. The formation of this local atomic arrangement can be an origin of a large drop of melting temperature at about Au:Si=81:19.


Sign in / Sign up

Export Citation Format

Share Document