Powder X-ray data for adenosine C10H13N5O4

2000 ◽  
Vol 15 (2) ◽  
pp. 112-115 ◽  
Author(s):  
Ruggero Caminiti ◽  
Giancarlo Ortaggi ◽  
Raffaele Antonio Mazzei ◽  
Paolo Ballirano ◽  
Rita Rizzi

New powder X-ray diffraction data of adenosine C10H13N5O4 were reported: cell parameters are a=4.8386(4) Å, b=10.2919(4) Å, c=11.8555(4) Å, β=99.298(5)°, volume 582.63(4)Å for the monoclinic space group P21. The strongest lines are: 7.723 (100), 5.085 (50), 5.851 (45), 4.710 (11), 3.881 (10), 3.899 (9), 3.292 (9), and 3.261 (9). Reported intensities are validated by Rietveld analysis. The data consist of measured positions and intensities and cover an angular range up to 75° 2θ and are significantly better than PDF 35-1977. Experimental, calculated, and difference patterns are also reported.

1997 ◽  
Vol 12 (2) ◽  
pp. 99-102 ◽  
Author(s):  
Paolo Ballirano ◽  
Adriana Maras ◽  
Peter R. Buseck ◽  
Ann M. Yates

New powder X-ray diffraction data of davyne, a member of the cancrinite group of minerals, were collected using a rotating anode diffractometer: the hexagonal cell parameters are a=12.6711(3) Å, c=5.3278(2) Å, volume 740.82(4) Å3 (space group P63). The strongest lines are: 3.658(100), 4.790(73), 3.272(70), 2.112(48), 2.438(22), 2.663(19), 1.781(19), and 4.147(17). The new data provide quantitative intensities improved precision in d-spacings and cover an increased 2θ angular range with respect to PDF 20-379. Measured intensities and a simulated pattern are reported together with crystal-chemical considerations.


2000 ◽  
Vol 15 (2) ◽  
pp. 108-111 ◽  
Author(s):  
Ruggero Caminiti ◽  
Giancarlo Ortaggi ◽  
Raffaele Antonio Mazzei ◽  
Paolo Ballirano ◽  
Rita Rizzi

Powder X-ray diffraction data of melatonin C13H16N2O2 were collected on a conventional X-ray powder diffractometer: the monoclinic cell parameter are a=7.7416(8) Å, b=9.2897(9) Å, c=17.1444(16) Å, β=96.756(9)°, volume 1224.4(3) Å3 (space group P21/c). The strongest lines are (d (Å), I/I0) 8.161 (100), 5.411 Å (46), 3.412 Å (34), 4.668 Å (33), 4.645 Å (25), 3.554 Å (22), 3.668 Å (16), and 4.483 Å (14). Reported intensities are validated by Rietveld analysis. The data consist of measured positions and intensities and cover an angular range up to 60° 2θ: experimental, calculated, and difference patterns are also reported.


1986 ◽  
Vol 1 (2) ◽  
pp. 33-34 ◽  
Author(s):  
D. F. Mullica ◽  
E. L. Sappenfield

AbstractThe indexed X-ray diffraction powder data of trans-bis(dimethylphenylphosphine)bis(pyrazole)platinum, {Pt(C3H4N2)2[P(CH3)2(C6H5)]2, PTPP} and trans-(tricyclohexylphosphino) (triethylphosphino) platinum(II) chloride, (PtCl2P2C24H48, PTHE) are reported. PTPP crystallizes in the monoclinic space group C2/c and PTHE crystallizes in the orthorhombic space group Pcab. The refined cell parameters were determined by employing a Siemens Debye-Scherrer camera (Fe radiation, λmean = 1.93736 Å). The cell constants are a = 21.516(5), b = 6.287(1), c = 17.929(4)Å, β = 102.51(1)°, V = 2367.7Å3 Dx=1.70Mg m−3, Dm = 1.70Mg m−3 for PTPP and a = 12.271(1), b = 19.375(1), c = 23.864(3)Å, V = 5673.4Å3, Dx = 1.553Mg m−3 for PTHE. The quantitative figures of merit (FN) are F23 = 47(0.010,51) [F20 = 60(0.009,35)] for PTPP and F30 = 12(0.008,324) [F20 = 27(0.017,105)] for PTHE. The JCPD S Diffraction File No. for PTPP is 37-1999 and for PTHE is 37-2000.


2000 ◽  
Vol 15 (1) ◽  
pp. 56-61 ◽  
Author(s):  
Umberto Costa ◽  
Paolo Ballirano

New powder X-ray diffraction data of Ca12Al14O32F2 (C11A7f), a cementitious compound, were collected on a conventional X-ray powder diffractometer; the cubic cell parameter is a=11.96269(6) Å, volume 1711.93(2) Å3 (space group I-43d (No. 220)). The strongest lines are 4.887(100), 2.676(95), 2.992(46), 2.443(46), 2.185(37), 3.198(32), 1.599(26), and 1.941(25). Reported intensities are validated by Rietveld analysis. The new data consist of measured intensities and cover a wider 2θ angular range with respect to the calculated PDF 25-394 and the indexed PDF 36-678: experimental, calculated, and difference patterns are reported together with crystal-chemical considerations.


1985 ◽  
Vol 40 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Kay Jansen ◽  
Kurt Dehnicke ◽  
Dieter Fenske

The syntheses and IR spectra of the complexes [Mo2(O2C-Ph)4X2]2⊖ with X = N3, CI, Br and the counter ion PPh4⊕ are reported. The azido and the bromo complexes are obtained from a solution of [Mo2(O2CPh)4] with PPh4N3 in pyridine or by reaction with PPh4Br in CH2Br2, respectively. When (PPh4)2[Mo2(O2CPh)4(N3)2] is dissolved in CH2Cl2, nitrogen is evolved and the complex with X = CI is obtained. The crystal structure of (PPh4)2[Mo2(O2CPh)4Cl2] · 2CH2Cl2 was determined from X-ray diffraction data (5676 observed independent reflexions, R = 0.042). It crystallizes in the monoclinic space group P21/n with four formula units per unit cell; the lattice constants are a = 1549, b = 1400, c = 1648 pm, β = 94.6°. The centrosymmetric [Mo2(O2CPh)4Cl2]2⊖ ion has a rather short Mo-Mo bond of 213 pm, whereas the MoCl bonds are very long (288 pm)


Author(s):  
Janice A. Frias ◽  
Brandon R. Goblirsch ◽  
Lawrence P. Wackett ◽  
Carrie M. Wilmot

OleC, a biosynthetic enzyme involved in microbial hydrocarbon biosynthesis, has been crystallized. Synchrotron X-ray diffraction data have been collected to 3.4 Å resolution. The crystals belonged to space groupP3121 orP3221, with unit-cell parametersa=b= 98.8,c= 141.0 Å.


Author(s):  
Michel Fleck ◽  
Ekkehart Tillmanns ◽  
Ladislav Bohatý ◽  
Peter Held

AbstractThe crystal structures of eight different L-malates have been determined and refined from single-crystal X-ray diffraction data. The compounds are the monoclinic (space groupIn addition, for all the compounds, powder diffraction data were collected, analysed and submitted to the powder diffraction file (PDF).


1994 ◽  
Vol 9 (3) ◽  
pp. 187-188 ◽  
Author(s):  
Hee-Lack Choi ◽  
Naoya Enomoto ◽  
Nobuo Ishizawa ◽  
Zenbe-e Nakagawa

X-ray powder diffraction data for Ti2O2(C2O4)(OH)2·H2O were obtained. The crystal system was determined to be orthorhombic with space group C2221. The unit cell parameters were refined to a = 1.0503(2) nm, b = 1.5509(3) nm, and c = 0.9700(1) nm.


1999 ◽  
Vol 55 (11) ◽  
pp. 1928-1929 ◽  
Author(s):  
Junichi Komoto ◽  
Yafei Huang ◽  
Yongbo Hu ◽  
Yoshimi Takata ◽  
Kiyoshi Konishi ◽  
...  

Guanidinoacetate methyltransferase is the enzyme which catalyzes the last step of creatine biosynthesis. The enzyme is found ubiquitously and in abundance in the livers of all vertebrates. Recombinant rat-liver guanidinoacetate methyltransferase has been crystallized with guanidinoacetate and S-adenosylhomocysteine. The crystals belong to the monoclinic space group P21, with unit-cell parameters a = 54.8, b = 162.5, c = 56.1 Å, β = 96.8 (1)° at 93 K, and typically diffract beyond 2.8 Å.


2019 ◽  
Vol 65 (4 Jul-Aug) ◽  
pp. 360 ◽  
Author(s):  
G. E. Delgado ◽  
C. Rincón ◽  
G. Marroquin

The crystal structure of the ordered vacancy compound (OVC) Cu3In5Te9 was analyzed using powder X-ray diffraction data. Several structural models were derived from the structure of the Cu-poor Cu-In-Se compound b-Cu0.39In1.2Se2 by permuting the cations in the available site positions. The refinement of the best model by the Rietveld method in the tetragonal space group P2c (Nº 112), with unit cell parameters a = 6.1852(2) Å, c = 12.3633(9) Å, V = 472.98(4) Å3, led to Rp = 7.1 %, Rwp = 8.5 %, Rexp = 6.4 %, S = 1.3 for 162 independent reflections. This model has the following Wyckoff site atomic distribution: Cu1 in 2e (0,0,0); In1 in 2f (½,½,0), In2 in 2d (0,½,¼); Cu2-In3 in 2b (½,0,¼); in 2a (0,0,¼); Te in 8n (x,y,z).


Sign in / Sign up

Export Citation Format

Share Document