Anionische Komplexe [Mo2(O2CPh)4X2]2⊖ mit X = N3, Cl, Br. Die Kristallstruktur von (PPh4)2[Mo2(O2CPh)4Cl2] · 2CH2Cl2 / Anionic Complexes [Mo2(O2C-Ph)4X2]2⊖ with X = N3, Cl, Br. The Crystal Structure of (PPh4)2[Mo2(O2C-Ph)4Cl2] · 2CH2Cl2

1985 ◽  
Vol 40 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Kay Jansen ◽  
Kurt Dehnicke ◽  
Dieter Fenske

The syntheses and IR spectra of the complexes [Mo2(O2C-Ph)4X2]2⊖ with X = N3, CI, Br and the counter ion PPh4⊕ are reported. The azido and the bromo complexes are obtained from a solution of [Mo2(O2CPh)4] with PPh4N3 in pyridine or by reaction with PPh4Br in CH2Br2, respectively. When (PPh4)2[Mo2(O2CPh)4(N3)2] is dissolved in CH2Cl2, nitrogen is evolved and the complex with X = CI is obtained. The crystal structure of (PPh4)2[Mo2(O2CPh)4Cl2] · 2CH2Cl2 was determined from X-ray diffraction data (5676 observed independent reflexions, R = 0.042). It crystallizes in the monoclinic space group P21/n with four formula units per unit cell; the lattice constants are a = 1549, b = 1400, c = 1648 pm, β = 94.6°. The centrosymmetric [Mo2(O2CPh)4Cl2]2⊖ ion has a rather short Mo-Mo bond of 213 pm, whereas the MoCl bonds are very long (288 pm)

1978 ◽  
Vol 33 (3) ◽  
pp. 261-264 ◽  
Author(s):  
Erich Sepp ◽  
Albert Pürzer ◽  
Gerhard Thiele ◽  
Helmut Behrens

Abstract The crystal structure of the [C7H7Fe(CO)3]- anion stabilized with the [(C6H5)4As]+ cation has been determinated by X-ray diffraction. The crystals are monoclinic, space group P21/n. The unit cell with lattice constants a = 1607.9 pm, b = 1386.8 pm, c = 1249.1 pm and β - 91.52° includes four formula units. The Fe(CO)3 group is bonded to the allyl anion part of the C7H7 ring system, while the diene part is unco-ordinated.


1984 ◽  
Vol 39 (12) ◽  
pp. 1680-1685 ◽  
Author(s):  
Ulrich Kynast ◽  
Elke Conradi ◽  
Ulrich Müller ◽  
Kurt Dehnicke

The dark brown cyclo-thiazeno com plexes [MoCl3(N3S2)]2 and [WCl3(N3S2)]2 are obtained by quantitative reactions of MoNCl3 with (NSCl)3 and of WOCl4 or WSCl4 with excess (NSCl)3, respectively. They are diamagnetic, thermally stable up to 200 °C, and only slightly sensitive towards moist air, but react explosively with aqueous bases. According to the IR spectra [MoCl3(N3S2)]2 is dimerized via chloro bridges whereas the tungsten com pound is associated via the γ-nitrogen atoms of the cyclo-thiazeno ligand. By reaction with [AsPh4]Cl or [PPh4]Cl in CH2Cl2, the compounds EPh4[MCl4(N3S2)] are obtained (E = P, As; M = Mo, W). The crystal structure of AsPh4[WCl4(N3S2)] was determined from X-ray diffraction data (1845 observed reflexions, R = 0.045). It crystallizes in the monoclinic space group P21/c with four formula units per unit cell. The lattice constants are a = 1352.4, b = 968.4, c = 2393.8 pm and β = 115.1°. The com pound is built up from AsPh4⊕ cations and [WCl4(N3S2)]⊖ anions in which the W atoms are coordinated in a distorted octahedral fashion by four Cl and two N atoms of the N3S2 ligand. The WN bond lengths (182 and 188 pm) correspond to douple bonds. The WN3S2 ring is planar and has SN bond lengths between 154 and 161 pm.


1980 ◽  
Vol 35 (5) ◽  
pp. 522-525 ◽  
Author(s):  
Gisela Beindorf ◽  
Joachim Strähle ◽  
Wolfgang Liebelt ◽  
Kurt Dehnicke

The complexes AsPh4[Cl4V = N-Cl] and AsPh4[VOCl4] are prepared by the reaction of AsPh4Cl with Cl3VNCl and VOCl3, respectively. The IR spectra indicate C4v symmetry for the complex anions with multiple VN and VO bonds and a linear arrangement for the VNCl-group. AsPh4[VOCl4] crystallizes in the tetragonal space group P4/n with two formula units in the unit cell. The crystal structure was solved by X-ray diffraction methods (R = 0,062, 1096 observed, independent reflexions). The structure consists of AsPh4+ cations and [VOCl4]- anions with symmetry C4v. The extremely short VO bond length corresponds with a VO triple; its steric requirements cause the relatively large bond angle OVCl of 103.4°.


Author(s):  
P. Bayliss ◽  
N. C. Stephenson

SummaryThe crystal structure of gersdorffite (III) has been examined with three-dimensional Weissenberg X-ray diffraction data. The unit cell is isometric with a 5·6849 ± 0·0003 Å, space group PI, and four formula units per cell. This structure has the sulphur and arsenic atoms equally distributed over the non-metal atom sites of pyrite. All atoms show significant random displacements from the ideal pyrite positions to produce triclinic symmetry, which serves to distinguish this mineral from a disordered cubic gersdorffite (II) and a partially ordered cubic gersdorffite (I). Factors responsible for the atomic distortions are discussed.


1973 ◽  
Vol 28 (7-8) ◽  
pp. 426-428 ◽  
Author(s):  
Ulrich Müller

CH3HgN3 crystallizes in the space group P21/c with four molecules per unit cell. The structure was solved by common crystallographic methods using X-ray diffraction data that were collected at a temperature of 100°K. The cooling was necessary to limit the radiation damage of the crystals. The molecules possess an essentially linear C-Hg-N group; in the crystals they are associated to layers bearing the methyl groups on their outer side.


1993 ◽  
Vol 48 (7) ◽  
pp. 1009-1012 ◽  
Author(s):  
Kurt Merzweiler ◽  
Harald Kraus

[{Cp(CO)2Fe}SnCl3] reacts with Na2Se in THF to form the compound [{Cp(CO)2Fe}3ClSn3Se4] 1. 1 crystallizes in the monoclinic space group P21/n with 4 formula units per unit cell. The lattice constants are α = 1435.2(7), b = 1124.4(4), c = 1972.7(12) pm, β = 94.59(4)°. According to the X-ray structure determination 1 contains a bicyclic Sn3Se4 framework.


1981 ◽  
Vol 36 (2) ◽  
pp. 135-137 ◽  
Author(s):  
Evamarie Hey ◽  
Ulrich Müller

The crystal structure of [MePh3P]2TiCl6 was determined from X-ray diffraction data and refined to a residual index of R = 0.065. It crystallizes in the space group P2i/n with two formula units per unit cell; the cell dimensions are a - 921, b = 1314, c = 1648 pm and y - 100.87°. The TiCl62- ion occupies an inversion center and has the shape of a slightly distorted octahedron with Ti-Cl distances between 233 and 235 pm.


1985 ◽  
Vol 40 (3) ◽  
pp. 443-446 ◽  
Author(s):  
Udo Demant ◽  
Elke Conradi ◽  
Ulrich Müller ◽  
Kurt Dehnicke

[HC(NH2)2]3FeCl6 was obtained together with other products from the reaction of S4N4 with HCl in H2CCl2 in the presence of FeCl3. Its crystal structure was determined from X-ray diffraction data (473 independent observed reflexions, R = 0.047). Lattice constants: a = 961.6, c = 876.4 pm; tetragonal, space group P42/m, Z = 2. Of the two crystallographically independent formamidinium ions HC(NH2)2⊕, one exhibits positional disorder; the other one has C-N bond lengths of 128 pm. The FeCl63⊖ ions have symmetry C2h, but the deviation from Oh is small.


2015 ◽  
Vol 30 (1) ◽  
pp. 63-66 ◽  
Author(s):  
Chao Zeng ◽  
Guoqiang Lin ◽  
Weijing Zeng ◽  
Wei He

The crystal structure of new Tb3CuAl3Ge2 quaternary compound was studied by the Rietveld method from powder X-ray diffraction (XRD) data. The Tb3CuAl3Ge2 compound crystallized in the hexagonal Y3NiAl3Ge2-type structure with space group P-62m (no. 189) and lattice parameters a = 7.0041(2) Å, c = 4.1775(1) Å, V = 177.48 Å3. There is only one formula in each unit cell, Z = 1, and the density of Tb3CuAl3Ge2 is ρx = 7.1696 g cm−3. The reliability factors characterizing the Rietveld refinement results are Rp = 6.43%, Rwp = 8.65%, RB = 4.81%, and RF = 4.09%, respectively. The powder XRD data of Tb3CuAl3Ge2 were presented and the reliability of indexation is F30 = 120.9(0.0073, 34).


2019 ◽  
Vol 65 (4 Jul-Aug) ◽  
pp. 360 ◽  
Author(s):  
G. E. Delgado ◽  
C. Rincón ◽  
G. Marroquin

The crystal structure of the ordered vacancy compound (OVC) Cu3In5Te9 was analyzed using powder X-ray diffraction data. Several structural models were derived from the structure of the Cu-poor Cu-In-Se compound b-Cu0.39In1.2Se2 by permuting the cations in the available site positions. The refinement of the best model by the Rietveld method in the tetragonal space group P2c (Nº 112), with unit cell parameters a = 6.1852(2) Å, c = 12.3633(9) Å, V = 472.98(4) Å3, led to Rp = 7.1 %, Rwp = 8.5 %, Rexp = 6.4 %, S = 1.3 for 162 independent reflections. This model has the following Wyckoff site atomic distribution: Cu1 in 2e (0,0,0); In1 in 2f (½,½,0), In2 in 2d (0,½,¼); Cu2-In3 in 2b (½,0,¼); in 2a (0,0,¼); Te in 8n (x,y,z).


Sign in / Sign up

Export Citation Format

Share Document