crystal chemical
Recently Published Documents


TOTAL DOCUMENTS

859
(FIVE YEARS 119)

H-INDEX

57
(FIVE YEARS 3)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nataliya L. Gulay ◽  
Maximilian Kai Reimann ◽  
Yaroslav M. Kalychak ◽  
Rainer Pöttgen

Abstract The rare earth-rich indides Tm4IrIn and Lu4PtIn were synthesized by reaction of the elements in sealed tantalum ampules in an induction furnace. Tm4IrIn (a = 1340.77(4) pm) and Lu4PtIn (a = 1338.0(1) pm) crystallize with the Gd4RhIn-type structure, space group F 4 ‾ 3 m $F‾{4}3m$ . The Lu4PtIn structure was refined from single crystal X-ray diffractometer data: wR = 0.0524, 517 F 2 values and 20 variables. The striking crystal chemical motif is the fcc packing of In4 tetrahedra with 318 pm In–In. The Lu4PtIn structure is closely related to the structures of Lu13Ni6In, Lu14Pd3In3 and Lu20Ir5In3 which all show icosahedral indium coordination and different condensation patterns that build up the indium substructure that consists of a dumbbell in Lu14Pd3In3 and a triangle in Lu20Ir5In3. The results of magnetic susceptibility measurements indicate Curie-Weiss paramagnetism for Tm4IrIn (7.76(1) µB per thulium atom) without magnetic ordering down to 2.5 K. Lu4PtIn is Pauli-paramagnetic.


2021 ◽  
Author(s):  
Matthieu Amor ◽  
Damien Faivre ◽  
Daniel M. Chevrier

Magnetite nanoparticles possess numerous fundamental, biomedical and industrial applications, many of which depend on tuning the magnetic properties. This is often achieved by the incorporation of trace and minor elements into the magnetite lattice. Such incorporation was shown to depend strongly on the magnetite formation pathway (i.e., abiotic vs biological), but the mechanisms controlling element partitioning between magnetite and its surrounding precipitation solution remain to be elucidated. Here, we used a combination of theoretical modelling (lattice and crystal field theories) and experimental evidence (high-resolution inductively coupled plasma mass spectrometry and X-ray absorption spectroscopy) to demonstrate that element incorporation into abiotic magnetite nanoparticles is controlled principally by cation size and valence. Elements from the first series of transition metals (Cr to Zn) constituted exceptions to this finding as their incorporation appeared to be also controlled by the energy levels of their unfilled 3d orbitals, in line with crystal field mechanisms. We then show that element incorporation into biological magnetite nanoparticles produced by magnetotactic bacteria (MTB) cannot be explained by crystal-chemical parameters alone, which points to the biological control exerted by the bacteria over the element transfer between MTB growth medium and the intracellular environment. This screening effect generates biological magnetite with a purer chemical composition than the abiotic materials formed in a solution of similar composition. Our work establishes a theoretical framework for understanding the crystal-chemical and biological controls of trace and minor cation incorporation into magnetite, thereby providing predictive methods to tailor the composition of magnetite nanoparticles for improved control over magnetic properties.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1281
Author(s):  
Quang K. Nguyen ◽  
Galina M. Kuz’micheva ◽  
Evgeny V. Khramov ◽  
Roman D. Svetogorov ◽  
Ratibor G. Chumakov ◽  
...  

This article presents a crystal chemical analysis, generalization, and systematization of structural characteristics of metal-organic polymers MIL-53(M3+) with M = Al, Cr, Ga, and Fe. The division of the MIL-53(M3+) structures into a morphotropic series was performed, which made it possible to predict the formation of new compounds or solid solutions with the corresponding composition and structure. The change in the symmetry of MIL-53(M3+) and the causes of polymorphs formation are explained on the basis of crystal chemical rules. The efficiency of the revealed regularities in the structural characteristics of the MIL-53(M3+) phases were experimentally confirmed for MIL-53(Fe) and composite MIL-53(Fe)/GO (GO-graphene oxide) by several methods (powder X-ray, X-ray absorption, and photoelectron spectroscopy). For the first time, different coordination numbers (CN) (CNFe = 4.9 for MIL-53(Fe)—two types of coordination polyhedra with CNFe = 6 and CNFe = 4; CNFe = 4 for MIL-53 (Fe3+)/GO) and the formal charges (FC) of iron ions (variable FC of Fe (2+δ)+ in MIL-53(Fe3+) and Fe2+ in MIL-53(Fe3+)/GO) were found. These experimental data explain the higher photocatalytic activity of MIL-53(Fe3+)/GO in photo-Fenton reactions—RR195 decomposition.


2021 ◽  
Vol 56 (5) ◽  
pp. 418-437
Author(s):  
T. A. Ivanovskaya ◽  
T. S. Zaitseva ◽  
B. B. Zviagina ◽  
B. A. Sakharov ◽  
B. B. Kochnev ◽  
...  

2021 ◽  
Vol 3 (9) ◽  
pp. 1377-1384
Author(s):  
Ekaterina I. Marchenko ◽  
Sergey A. Fateev ◽  
Nikolay N. Eremin ◽  
Qi Chen ◽  
Eugene A. Goodilin ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 807
Author(s):  
Ilya V. Kornyakov ◽  
Sergey V. Krivovichev

Single crystals of two novel shchurovskyite-related compounds, K2Cu[Cu3O]2(PO4)4 (1) and K2.35Cu0.825[Cu3O]2(PO4)4 (2), were synthesized by crystallization from gaseous phase and structurally characterized using single-crystal X-ray diffraction analysis. The crystal structures of both compounds are based upon similar Cu-based layers, formed by rods of the [O2Cu6] dimers of oxocentered (OCu4) tetrahedra. The topologies of the layers show both similarities and differences from the shchurovskyite-type layers. The layers are connected in different fashions via additional Cu atoms located in the interlayer, in contrast to shchurovskyite, where the layers are linked by Ca2+ cations. The structures of the shchurovskyite family are characterized using information-based structural complexity measures, which demonstrate that the crystal structure of 1 is the simplest one, whereas that of 2 is the most complex in the family.


Author(s):  
Nazar Zaremba ◽  
Ihor Muts ◽  
Volodymyr Pavlyuk ◽  
Viktor Hlukhyy ◽  
Rainer Pöttgen ◽  
...  

Abstract Single crystals of a new samarium platinum indide have been synthesized in a high-frequency furnace under flowing argon atmosphere. The crystal structure of SmPt2In2 was determined from single-crystal X-ray data (R1 = 0.0416 for 1049 F values and 63 variables). It belongs to the CePt2In2 structure type with the following crystallographic parameters: P21/m, mP20, Z = 4, a = 10.0561(8), b = 4.4214(2), c = 10.1946(8) Å, β = 116.492(5)°, V = 405.68(5) Å3. Physical properties were studied and the crystal chemical discussion is supported by electronic structure calculations.


Sign in / Sign up

Export Citation Format

Share Document