scholarly journals Powder X-ray diffraction of trimethoprim Form I, C14H18N4O3

2020 ◽  
Vol 35 (1) ◽  
pp. 69-70
Author(s):  
Jerry Hong ◽  
Joseph T. Golab ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

Trimethoprim crystallizes in the triclinic space group P-1 (#2) with a = 10.5085(3), b = 10.5417(2), c = 8.05869(13) Å, α = 101.23371(21), β = 112.1787(3), γ = 112.6321(4)°, V = 743.729 Å3, and Z = 2. A reduced cell search in the Cambridge Structural Database yielded three previous structure determinations, using data collected at 100 K, 173 K, and room temperature. In this work, the sample was ordered from the United States Pharmacopeial Convention (USP) and analyzed as-received. The room temperature (295 K) crystal structure was refined using synchrotron (λ = 0.412826 Å) powder diffraction data and optimized using density functional theory techniques. We found similar hydrogen bonding patterns with the previous determinations. In addition, we identified two C–H⋯O hydrogen bonds, which also contribute to the crystal energy. When comparing the previously reported trimethoprim structure determinations, the unit cell length lattice parameters were found to contract at lower temperatures, particularly 100 K. All structures show reasonable agreement, with unit cell length differences ranging between 0.05 and 0.15 Å. The diffraction data for this study were collected on beamline 11-BM at the Advanced Photon Source, and the powder X-ray diffraction pattern of the compound has been submitted to ICDD® for inclusion in the Powder Diffraction File™ (PDF®).


1997 ◽  
Vol 12 (3) ◽  
pp. 134-135
Author(s):  
Liangqin Nong ◽  
Lingmin Zeng ◽  
Jianmin Hao

The compound DyNiSn has been studied by X-ray powder diffraction. The X-ray diffraction patterns for this compound at room temperature are reported. DyNiSn is orthorhombic with lattice parameters a=7.1018(1) Å, b=7.6599(2) Å, c=4.4461(2) Å, space group Pna21 and 4 formula units of DyNiSn in unit cell. The Smith and Snyder Figure-of-Merit F30 for this powder pattern is 26.7(0.0178,63).



1996 ◽  
Vol 11 (1) ◽  
pp. 7-8 ◽  
Author(s):  
Hee-Lack Choi ◽  
Nobuo Ishizawa ◽  
Naoya Enomoto ◽  
Zenbe-e Nakagawa

X-ray powder-diffraction data for Pb2(C2O4)(NO3)2·2H2O were obtained. The crystal system was determined to be monoclinic. The unit-cell parameters were refined to a=10.613(2) Å, b=7.947(2) Å, c=6.189(1) Å, and β=104.48(2)°.



1999 ◽  
Vol 14 (3) ◽  
pp. 231-233 ◽  
Author(s):  
Raj P. Singh ◽  
Michael J. Miller ◽  
Jeffrey N. Dann

(Na0.6H0.4)(Ta0.7Nb0.3)O3 was synthesized by heating a tantalum/niobium scale containing two sodium tantalate/niobate phases :Na14(Ta0.7Nb0.3)12O37·31H2O and NaH2Ta0.7Nb0.3O4. Powder X-ray diffraction data for (Na0.6H0.4)(Ta0.7Nb0.3)O3 indicated it to be a cubic perovskite (ABO3/ReO3 type structure) with unit cell a0=3.894 Å. The compound is analogous to the mineral lueshite (NaNbO3), and to the high temperature forms of NaTaO3 and NaNbO3. Powder diffraction data for (Na0.6H0.4)(Ta0.7Nb0.3)O3 will be useful in the analysis of synthetic tantalum/niobium concentrates.



1994 ◽  
Vol 9 (3) ◽  
pp. 187-188 ◽  
Author(s):  
Hee-Lack Choi ◽  
Naoya Enomoto ◽  
Nobuo Ishizawa ◽  
Zenbe-e Nakagawa

X-ray powder diffraction data for Ti2O2(C2O4)(OH)2·H2O were obtained. The crystal system was determined to be orthorhombic with space group C2221. The unit cell parameters were refined to a = 1.0503(2) nm, b = 1.5509(3) nm, and c = 0.9700(1) nm.



2012 ◽  
Vol 27 (1) ◽  
pp. 20-24
Author(s):  
F. Needham ◽  
C. E. Crowder ◽  
J. W. Reid ◽  
T. G. Fawcett ◽  
J. Faber

An experimental X-ray powder diffraction pattern was produced and analyzed for imipenem monohydrate, an antimicrobial pharmaceutical agent. Although there are no experimental powder patterns in the ICDD PDF-4/Organics Database, there is one powder pattern calculated with single-crystal X-ray diffraction data from the Cambridge Structural Database. Here, we report the refined experimental powder diffraction data for imipenem monohydrate. These data for imipenem monohydrate are consistent with an orthorhombic crystal system having reduced unit-cell parameters of a = 8.2534(3) Å, b = 11.1293(4) Å, and c = 15.4609(6) Å. The resulting unit-cell volume, 1420.15(15) Å3, indicates four formula units per unit cell. Observed peaks are consistent with the P212121 space group.



1999 ◽  
Vol 14 (4) ◽  
pp. 280-283 ◽  
Author(s):  
A. Rafalska-Łasocha ◽  
W. Łasocha ◽  
M. Michalec

The X-ray powder diffraction patterns of anilinium trimolybdate tetrahydrate, (C6H5NH3)2Mo3O10·4H2O, and anilinium trimolybdate dihyhydrate, (C6H5NH3)2Mo3O10·2H2O, have been measured in room temperature. The unit cell parameters were refined to a=11.0670(7) Å, b=7.6116(8) Å, c=25.554(3) Å, space group Pnma(62) and a=17.560(2) Å, b=7.5621(6) Å, c=16.284(2) Å, β=108.54(1)°, space group P21(4) or P21/m(11) for orthorhombic anilinium trimolybdate tetrahydrate and monoclinic anilinium trimolybdate dihydrate, respectively.



2009 ◽  
Vol 24 (3) ◽  
pp. 250-253 ◽  
Author(s):  
Peter Varlashkin

The room temperature powder pattern of lapatinib ditosylate monohydrate (active ingredient in Tykerb used to treat refractory breast cancer) was indexed and the cell from the single crystal X-ray diffraction structure was refined using the experimental capillary data. Unit-cell parameters for the orthorhombic compound with space group Pbca refined from powder diffraction data are a=9.6850±0.0009 Å, b=29.364±0.003 Å, and c=30.733±0.003 Å, α=β=γ=90°, z=8, V=8740.1 Å3. Values of 2θ, d, I, and Miller indices are reported.



2010 ◽  
Vol 25 (1) ◽  
pp. 72-74 ◽  
Author(s):  
H. A. Camargo ◽  
J. A. Henao ◽  
D. F. Amado ◽  
V. V. Kouznetsov

1-N-(4-pyridylmethyl)amino naphtalene was synthesized by means of a reaction of alpha-naphthylamine, 4-pyridylcarboxyaldehyde, in anhydrous ethanol to obtainN-(4-pyridylen)-alpha-naphthylamine and that was reduced with NaBH4 to produce the wanted compound. The X-ray powder diffraction pattern for the new compound 1-N-(4-pyrydylmethyl)amino naphtalene was obtained. This compound crystallizes in a monoclinic system with refined unit cell parameters a=10.375(5) Å, b=17.665(6) Å, c=5.566(2) Å, β=100.11(3), and V=1004.3(5) Å3, with space group P2/m (No. 10).



1999 ◽  
Vol 55 (5) ◽  
pp. 721-725 ◽  
Author(s):  
Mitsuko Onoda ◽  
Xue-An Chen ◽  
Katsuo Kato ◽  
Akira Sato ◽  
Hiroaki Wada

The structure of the orthorhombic room-temperature phase of Cu8GeS6 (copper germanium sulfide), Mr = 773.27, has been refined on the basis of X-ray diffraction data from a 12-fold twinned crystal applying a six-dimensional twin refinement technique. For 1804 unique reflections measured using Mo Kα radiation, RF was 0.083 with 77 structure parameters and 12 scale factors. The symmetry operations, the unit cell and other crystal data are (0, 0, 0; ½, ½, 0) + x, y, z; y, x, z; ¼ − x, ¾ − y, ½ + z; ¾ − y, ¼ − x, ½ + z; a = b = 9.9073 (3) Å, c = 9.8703 (4) Å, α = β = 90°, γ = 90.642 (4)°; V = 968.7 (1) Å3, Z = 4, Dx  = 5.358 Mg m−3, μ = 21.70 mm−1. The standard setting of the space group and the reduced unit cell are Pmn21; a = 7.0445 (3), b = 6.9661 (3), c = 9.8699 (5) Å; Z = 2.



1998 ◽  
Vol 13 (3) ◽  
pp. 134-135
Author(s):  
Fabrice Goubard ◽  
Samuel Llorente ◽  
Valérie Delobbe ◽  
Daniel Bizot ◽  
Jean Chassaing

X-ray diffraction experiments performed on the compounds FeIINbIVF6 and CoIINbIVF6 have shown that they crystallize in the rhombohedral system, space group R3¯ with a cationic ordering. Unit cell parameters were determined: a=5.4201(8) Å, c=14.072(2) Å, V=357.8(1) Å, Z=3 for FeNbF6, and a=5.351(2) Å, c=13.960(6) Å, V=346.2(2) Å, Z=3 for CoNbF6. Synthesis and powder diffraction data are reported.



Sign in / Sign up

Export Citation Format

Share Document