Crystal structure of pomalidomide Form I, C13H11N3O4

2021 ◽  
pp. 1-6
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of pomalidomide Form I has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Pomalidomide Form I crystallizes in the space group P-1 (#2) with a = 7.04742(9), b = 7.89103(27), c = 11.3106(6) Å, α = 73.2499(13), β = 80.9198(9), γ = 88.5969(6)°, V = 594.618(8) Å3, and Z = 2. The crystal structure is characterized by the parallel stacking of planes parallel to the bc-plane. Hydrogen bonds link the molecules into double layers also parallel to the bc-plane. Each of the amine hydrogen atoms acts as a donor to a carbonyl group in an N–H⋯O hydrogen bond, but only two of the four carbonyl groups act as acceptors in such hydrogen bonds. Other carbonyl groups participate in C–H⋯O hydrogen bonds. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™ (PDF®).

2018 ◽  
Vol 33 (4) ◽  
pp. 298-302
Author(s):  
Austin M. Wheatley ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of bretylium tosylate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Bretylium tosylate crystallizes in space group C2/c (#15) with a = 32.6238(4), b = 12.40353(14), c = 9.93864(12) Å, β = 101.4676(10), V = 3941.39(5) Å3, and Z = 8. The sample exhibited visible decomposition in the X-ray beam. The unusual displacement ellipsoid of the Br atom probably indicates that the decomposition in the beam involves the Br atom. The crystal structure can be viewed as layered parallel to the bc plane. The layers are double, the center consisting of the cation/anion polar interactions and the outer surface of the double layers consists of hydrocarbon interactions. In the absence of normal hydrogen bond donors, the only hydrogen bonds in the bretylium tosylate structure are C–H…O hydrogen bonds. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™.


2021 ◽  
pp. 1-3
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of pazopanib hydrochloride Form 1 has been refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Pazopanib hydrochloride crystallizes in space group P-1 (#2) with a = 8.45008(6), b = 8.71310(12), c = 16.05489(35) Å, α = 79.5996(9), β = 86.4784(5), γ = 87.3764(3)°, V = 1159.724(9) Å3, and Z = 2. The crystal structure is essentially identical to that of CSD Refcode CEVYEK. There are four strong N–H⋯Cl hydrogen bonds to the chloride anion. Several additional weaker N–H⋯Cl and C–H⋯Cl hydrogen bonds are also present. A variety of C–H⋯O, C–H⋯N, and N–H⋯S hydrogen bonds also contribute to the lattice energy. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™.


2020 ◽  
Vol 35 (1) ◽  
pp. 53-60
Author(s):  
Diana Gonzalez ◽  
Joseph T. Golab ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of pantoprazole sodium sesquihydrate has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Pantoprazole sodium sesquihydrate crystallizes in space group Pbca (#61) with a = 33.4862(6), b = 17.29311(10), c = 13.55953(10) Å, V = 7852.06(14) Å3, and Z = 16. The crystal structure is characterized by layers parallel to the bc-plane. One layer contains the Na coordination spheres. The two independent sodium ions are trigonal bipyramidal and octahedral. The NaO3N2 and NaO4N2 coordination spheres share an edge to form pairs. The sodium bond valence sums are 1.17 and 1.15. The difluoromethyl groups are probably disordered. Two water molecules act as hydrogen bond donors to pyridine nitrogen atoms and sulfoxide oxygen atoms. The third water molecule participates in bifurcated hydrogen bonds, but one of its hydrogen atoms does not participate in hydrogen bonds. The powder pattern is included in the Powder Diffraction File™ as entry 00-065-1424.


2021 ◽  
pp. 1-6
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of palbociclib isethionate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional theory techniques. Palbociclib isethionate crystallizes in space group P-1 (#2) with a = 8.71334(4), b = 9.32119(6), c = 17.73725(18) Å, α = 80.0260(5), β = 82.3579(3), γ = 76.1561(1)°, V = 1371.282(4) Å3, and Z = 2. The crystal structure is dominated by cation⋯anion and cation⋯cation hydrogen bonds, which result in layers roughly parallel to the (104) plane. Both hydrogen atoms on the protonated nitrogen atom of the pyrimidine ring participate in strong hydrogen bonds to the anions. One proton binds to the sulfonate group, while the other bonds to the hydroxyl group of the isethionate anion. The hydroxyl group of the anion acts as a donor to a ketone oxygen atom in the cation. There are also strong N–H⋯N hydrogen bonds, which occur in pairs linking the cations into dimers with rings having a graph set R2,2(8). The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™.


2015 ◽  
Vol 30 (3) ◽  
pp. 224-230
Author(s):  
James A. Kaduk ◽  
Kai Zhong ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of lacosamide form I has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques (density functional theory). Lacosamide form I crystallizes in space group P21 (#4) with a = 10.677 73(5), b = 4.799 68(2), c = 13.639 16(9) Å, β = 91.6331(10)̊, V = 698.719(6) Å3, and Z = 2. Van der Waals interactions are important in the crystal structure. Two N–H···O hydrogen bonds form C1,1(4) chains along the b-axis. Several weaker C–H···O hydrogen bonds to the ketone oxygens also contribute to the packing energy. These C–H···O extend both along the b-axis and in the ac-plane, and help link the molecules in three dimensions. The powder pattern has been submitted to International Centre for Diffraction Data for inclusion in the Powder Diffraction File™.


2021 ◽  
pp. 1-4
Author(s):  
Ryan L. Hodge ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of daclatasvir dihydrochloride Form N-2 (Daklinza®) has been refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Daclatasvir dihydrochloride, Form N-2, crystallizes in space group P1 (#1) with a = 7.54808 (15), b = 9.5566 (5), c = 16.2641 (11) Å, α = 74.0642 (24), β = 84.0026 (13), γ = 70.6322 (5)°, V = 1064.150(11) Å3, and Z = 1. The hydrogen bonds were identified and quantified. Strong N–H⋯Cl hydrogen bonds link the cations and anions in chains along the a-axis. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™ (PDF®).


2021 ◽  
pp. 1-8
Author(s):  
Joel W. Reid ◽  
James A. Kaduk

The crystal structure of donepezil hydrochloride, form III, has been solved with FOX using laboratory powder diffraction data previously submitted to and published in the Powder Diffraction File. Rietveld refinement with GSAS yielded monoclinic lattice parameters of a = 14.3662(9) Å, b = 11.8384(6) Å, c = 13.5572(7) Å, and β = 107.7560(26)° (C24H30ClNO3, Z = 4, space group P21/c). The Rietveld-refined structure was compared to a density functional theory (DFT)-optimized structure, and the structures exhibit excellent agreement. Layers of donepezil molecules parallel to the (101) planes are maintained by columns of chloride anions along the b-axis, where each chloride anion hydrogen bonds to three donepezil molecules each.


2019 ◽  
Vol 34 (1) ◽  
pp. 50-58
Author(s):  
James A. Kaduk ◽  
Nicholas C. Boaz ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of oxybutynin hydrochloride hemihydrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Oxybutynin hydrochloride hemihydrate crystallizes in space group I2/a (#15) with a = 14.57266(8), b = 8.18550(6), c = 37.16842(26) Å, β = 91.8708(4)°, V = 4421.25(7) Å3, and Z = 8. The compound exhibits X-ray-induced photoreduction of the triple bond. Prominent in the layered crystal structure is the N–H⋅⋅⋅Cl hydrogen bond between the cation and anion, as well as O–H⋅⋅⋅Cl hydrogen bonds from the water molecule and hydroxyl group of the oxybutynin cation. C–H⋅⋅⋅Cl hydrogen bonds also contribute to the crystal energy, and help determine the conformation of the cation. The powder pattern is included in the Powder Diffraction File™ as entry 00-068-1305.


2021 ◽  
pp. 1-9
Author(s):  
James A. Kaduk ◽  
Nicholas C. Boaz ◽  
Emma L. Markun ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of osimertinib mesylate Form B has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Osimertinib mesylate Form B crystallizes in space group P-1 (#2) with a = 11.42912(17), b = 11.72274(24), c = 13.32213(22) Å, α = 69.0265(5), β = 74.5914(4), γ = 66.4007(4)°, V = 1511.557(12) Å3, and Z = 2. The crystal structure is characterized by alternating layers of cation–anion and parallel stacking interactions parallel to the ab-planes. The cation is protonated at the nitrogen atom of the dimethylamino group, which forms a strong hydrogen bond between the cation and the anion. That hydrogen atom also participates in a weaker intramolecular hydrogen bond to an amino nitrogen. There are two additional N–H⋅⋅⋅O hydrogen bonds between the cation and the anion. Several C–H⋅⋅⋅O hydrogen bonds also link the cations and anions. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™.


2019 ◽  
Vol 34 (2) ◽  
pp. 189-195
Author(s):  
Samantha C. Diulus ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of bumetanide has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Bumetanide crystallizes in space group P-1 (#2) with a = 5.00168(4), b = 9.22649(3), c = 19.59924(14) Å, α = 80.7941(5), β = 82.8401(7), γ = 86.8148(7)°, V = 885.268(9) Å3, and Z = 2. The crystal structure is layered with the double layers parallel to the ab plane. The exterior of the layer is composed of hydrocarbon portions of the molecule, both phenyl rings and butyl side chains. The central portion of the bilayer contains the hydrogen-bonding regions, both the carboxylic acid dimers and the hydrogen bonds involving the sulfonamide groups. The molecular conformations of bumetanide in this current triclinic structure and the previously-determined monoclinic polymorph FEDGON are very similar, as are the energies of the two polymorphs. The powder pattern is included in the Powder Diffraction File™ as entry 00-066-1609.


Sign in / Sign up

Export Citation Format

Share Document