Depth perception and cortical physiology in normal and innate microstrabismic cats

1991 ◽  
Vol 6 (1) ◽  
pp. 25-41 ◽  
Author(s):  
C. Distler ◽  
K.-P. Hoffmann

AbstractEvidence is presented that innate microstrabismus and abnormal cortical visual receptive-field properties can occur also in cats without any apparent involvement of the Siamese or albino genetic abnormalities in their visual system. A possible cause for microstrabismus in these cats may be sought in an abnormally large horizontal distance between blind spot and area centralis indicated by a temporal displacement of the most central receptive fields on both retinae.Depth perception was found to be impaired in cats with innate microstrabismus. Behavioral measurements using a Y-maze revealed in four such cats that the performance in recognizing the nearer of two random-dot patterns did not improve when they were allowed to use both eyes instead of only one. The ability of microstrabismic cats to perceive depth under binocular viewing conditions only corresponded to the monocular performance of five normal cats.Electrophysiological recordings were performed in the visual cortex (areas 17 and 18) of four awake cats, two normal, and two innate microstrabismic animals. Ocular dominance and orientation tuning of single neurons in area 17 and 18 were analyzed quantitatively.The percentage of neurons in area 17 and 18 which could be activated through either eye was significantly reduced to 49.7% in the microstrabismic animals when compared to the normal cats (74.8%). “True binocular cells,” which can only be activated by simultaneous stimulation of both eyes, were significantly less frequent (1.6%) in microstrabismic cats than in normal animals (10.4%). However, subthreshold binocular interactions were identical in both groups of animals. In the strabismic animals, long-term binocular stimulation of monocular neurons did not give a clear indication of alternating use of one or the other eye.The range of stimulus orientations leading to discharge rates above 50% of the maximal response, i.e. the half-width of the orientation tuning curves, was the same in the two groups of cats. However, orientation sensitivity, i.e. the alternation in discharge rate per degree change in stimulus orientation, was higher in cortical cells of normal cats than in those of microstrabismic cats.In normal and microstrabismic cats, no clear sign of an “oblique effect,” i.e. the preference of cortical neurons for vertical and horizontal orientations compared to oblique orientations, could be found neither in the incidence of cells with horizontal or vertical preferred orientation nor in the sharpness of orientation tuning and sensitivity of these neurons.In summary, the receptive-field properties reported here for awake innate microstrabismic cats are similar to those reported in the literature for anesthetized cats with varying degrees of albinism and for cats with artificial symmetrical strabismus surgically induced by sectioning the equivalent extraocular muscles in both eyes. Our innate microstrabismic cats may provide, however, an animal model for investigating the etiology of one form of naturally occurring strabismus.

1992 ◽  
Vol 9 (1) ◽  
pp. 47-64 ◽  
Author(s):  
W. Burke ◽  
B. Dreher ◽  
A. Michalski ◽  
B. G. Cleland ◽  
M. H. Rowe

AbstractIn an aseptic operation under surgical anesthesia, one optic nerve of a cat was exposed and subjected to pressure by means of a special cuff. The conduction of impulses through the pressurized region was monitored by means of electrodes which remained in the animal after the operation. The pressure was adjusted to selectively eliminate conduction in the largest fibers (Y-type) but not in the medium-size fibers (X-type). The conduction block is probably due to a demyelination and remains complete for about 3 weeks. Within 2 weeks after the pressure-block operation, recordings were made from single neurons in the striate cortex (area 17, area VI) of the cat anesthetized with N2O/O2 mixture supplemented by continuous intravenous infusion of barbiturate. Neurons were activated visually via the normal eye and via the eye with the pressure-blocked optic nerve (“Y-blocked eye”). Several properties of the receptive fields of single neurons in area 17 such as S (simple) or C (complex) type of receptive-field organization, size of discharge fields, orientation tuning, direction-selectivity indices, and end-zone inhibition appear to be unaffected by removal of the Y-type input. On the other hand, the peak discharge rates to stimuli presented via the Y-blocked eye were significantly lower than those to stimuli presented via the normal eye. As a result, the eye-dominance histogram was shifted markedly towards the normal eye implying that there is a significant excitatory Y-type input to area 17. In a substantial proportion of area 17 neurons, this input converges onto the cells which receive also non-Y-type inputs. In one respect, velocity sensitivity, removal of the Y input had a weak but significant effect. In particular, C (but not S) cells when activated via the normal eye responded optimally at slightly higher stimulus velocities than when activated via the Y-blocked eye. These results suggest that the Y input makes a distinct contribution to velocity sensitivity in area 17 but only in C-type neurons. Overall, our results lead us to the conclusion that the Y-type input to the striate cortex of the cat makes a significant contribution to the strength of the excitatory response of many neurons in this area. However, the contributions of Y-type input to the mechanism(s) underlying many of the receptive-field properties of neurons in this area are not distinguishable from those of the non-Y-type visual inputs.


1986 ◽  
Vol 56 (4) ◽  
pp. 1088-1101 ◽  
Author(s):  
T. G. Weyand ◽  
J. G. Malpeli ◽  
C. Lee ◽  
H. D. Schwark

The receptive field properties of antidromically identified corticotectal (CT) cells in area 17 were explored in the paralyzed, anesthetized cat. To compare these with another population of infragranular cells, we also examined the receptive field properties of cells in layer 6. Sixty percent of our sample of CT cells showed increased response to increased stimulus length (length summation) and were classified as standard complex cells. The other 40% showed little or no length summation, were generally end stopped, and were classified as special complex cells. Standard and special complex CT cells have complementary orientation anisotropies: the distribution of orientation preferences of standard complex cells is biased toward obliquely oriented stimuli, whereas special complex cells are biased toward horizontally and vertically oriented stimuli. The receptive fields of the cells in our sample were primarily along the horizontal meridian so we cannot determine if these anisotropies are defined relative to the vertical meridian or relative to the meridian passing through the receptive field. The effects of these anisotropies in preferred orientation are minimized by the broad orientation tuning of CT cells. There was no simple relationship between the direction bias of CT cells and the reported direction bias of tectal cells. In contrast to the heterogeneity of corticotectal cells, layer 6 cells uniformly showed strong length summation, tight orientation tuning, and little spontaneous activity.


1992 ◽  
Vol 9 (1) ◽  
pp. 65-78 ◽  
Author(s):  
B. Dreher ◽  
A. Michalski ◽  
B. G. Cleland ◽  
W. Burke

AbstractRecordings were made from single neurons in area 18 of anesthetized cats (N2O/O2 mixture supplemented by continuous intravenous infusion of barbiturate) in which one optic nerve had been pressure blocked to selectively block conduction in the largest (Y-type) fibers. Cortical neurons were stimulated visually via the normal eye or via the eye with the pressure-blocked optic nerve (“Y-blocked eye”). Several properties of the receptive fields such as their spatial organization (S or C cells), orientation tuning, and the presence and strength of end-zone inhibition appear to be unaffected by removal of the Y input. By contrast, the removal of the Y input resulted in a small but significant reduction in the size of the discharge field and in the direction-selectivity index. In three respects, peak response discharge rate, eye dominance, and velocity sensitivity, removal of the Y input had strong and highly significant effects. Thus, the mean peak discharge frequency of responses evoked by the stimulation of binocular neurons via the Y-blocked eye was significantly lower than that of responses evoked by the stimulation via the normal eye. Accordingly, the eye-dominance histogram was shifted markedly towards the normal eye (more so than in the homologous experiment conducted on area 17 — Burke et al., 1992). Finally, the mean preferred velocity of responses of cells activated via the normal eye was in the vicinity of 145 deg/s, whereas for cells activated via the Y-blocked eye the value was about 35 deg/s. Overall, the results of the present study imply that (1) apart from Y-type excitatory input there are significant excitatory non-Y-inputs to area 18; these inputs at least partially consist of indirect X-type input relayed via area 17; (2) in neurons of area 18 that receive both Y-type and non-Y-type excitatory inputs, the Y-type input has a major influence on strength of the response and velocity sensitivity and a lesser influence on the direction selectivity and size of the discharge fields; and (3) area 18 contains mechanisms determining such receptive-field properties as S- or C-type organization, orientation tuning, and direction selectivity which can be accessed either by the Y input or by non-Y input.


2007 ◽  
Vol 97 (5) ◽  
pp. 3781-3789 ◽  
Author(s):  
Ian Nauhaus ◽  
Dario L. Ringach

Recent theoretical models of primary visual cortex predict a relationship between receptive field properties and the location of the neuron within the orientation maps. Testing these predictions requires the development of new methods that allow the recording of single units at various locations across the orientation map. Here we present a novel technique for the precise alignment of functional maps and array recordings. Our strategy consists of first measuring the orientation maps in V1 using intrinsic optical imaging. A micromachined electrode array is subsequently implanted in the same patch of cortex for electrophysiological recordings, including the measurement of orientation tuning curves. The location of the array within the map is obtained by finding the position that maximizes the agreement between the preferred orientations measured electrically and optically. Experimental results of the alignment procedure from two implementations in monkey V1 are presented. The estimated accuracy of the procedure is evaluated using computer simulations. The methodology should prove useful in studying how signals from the local neighborhood of a neuron, thought to provide a dominant feedback signal, shape the receptive field properties in V1.


1999 ◽  
Vol 16 (4) ◽  
pp. 637-652 ◽  
Author(s):  
P.A. HETHERINGTON ◽  
N.V. SWINDALE

The receptive-field positions and orientation preferences of neurons occupying the same tangential location in visual cortex are thought to be similar but to have an associated random scatter. However, previous estimates of this scatter may have been inflated by the use of subjective plotting methods, sequential recording of single units, and residual eye movements. Here we report measurements of receptive-field position and orientation scatter in cat area 17 made with tetrodes, which were able to simultaneously isolate and record up to 11 nearby neurons (ensembles). We studied 355 units at 72 sites with moving light and dark bars. Receptive-field sizes and positions were estimated by least-squares fitting of Gaussians to response profiles. We found that receptive-field position scatter was about half of the ensemble average receptive-field size. We confirmed previous estimates of orientation scatter, but calculations suggested that much of it may be accounted for by anatomical scatter in the positions of recorded neurons relative to the tetrode in a smooth map. Orientation tuning width was positively correlated with the degree of orientation scatter. Scatter was not independent in the two eyes: deviations from the local mean for both preferred orientation and receptive-field position were correlated although a significant amount of residual inter-ocular orientation and receptive-field position scatter was present. We conclude that cortical maps of orientation and receptive-field position are more ordered than was previously thought, and that random scatter in receptive-field positions makes a relatively small contribution to cortical point image size.


2002 ◽  
Vol 88 (3) ◽  
pp. 1128-1135 ◽  
Author(s):  
Timothy J. Gawne ◽  
Julie M. Martin

We report here results from 45 primate V4 visual cortical neurons to the preattentive presentations of seven different patterns located in two separate areas of the same receptive field and to combinations of the patterns in the two locations. For many neurons, we could not determine any clear relationship for the responses to two simultaneous stimuli. However, for a substantial fraction of the neurons we found that the firing rate was well modeled as the maximum firing rate of each stimulus presented separately. It has previously been proposed that taking the maximum of the inputs (“MAX” operator) could be a useful operation for neurons in visual cortex, although there has until now been little direct physiological evidence for this hypothesis. Our results here provide direct support for the hypothesis that the MAX operator plays a significant (although certainly not exclusive) role in generating the receptive field properties of visual cortical neurons.


Sign in / Sign up

Export Citation Format

Share Document