oblique effect
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 11)

H-INDEX

24
(FIVE YEARS 1)

2022 ◽  
Vol 15 ◽  
Author(s):  
Xiaowei Zheng ◽  
Guanghua Xu ◽  
Yuhui Du ◽  
Hui Li ◽  
Chengcheng Han ◽  
...  

This study aimed to explore whether there was an effect on steady-state visual evoked potential (SSVEP) visual acuity assessment from the oblique effect or the stimulus orientation. SSVEPs were induced by seven visual stimuli, e.g., the reversal sinusoidal gratings with horizontal, two oblique, and vertical orientations, reversal checkerboards with vertical and oblique orientations, and oscillating expansion-contraction concentric-rings, at six spatial frequency steps. Ten subjects participated in the experiment. Subsequently, a threshold estimation criterion was used to determine the objective SSVEP visual acuity corresponding to each visual stimulus. Taking the SSVEP amplitude and signal-to-noise-ratio (SNR) of the fundamental reversal frequency as signal characteristics, both the SSVEP amplitude and SNR induced by the reversal sinusoidal gratings at 3.0 cpd among four stimulus orientations had no significant difference, and the same finding was also shown in the checkerboards between vertical and oblique orientation. In addition, the SSVEP visual acuity obtained by the threshold estimation criterion for all seven visual stimuli showed no significant difference. This study demonstrated that the SSVEPs induced by all these seven visual stimuli had a similarly good performance in evaluating visual acuity, and the oblique effect or the stimulus orientation had little effect on SSVEP response as well as the SSVEP visual acuity.


Perception ◽  
2021 ◽  
pp. 030100662110065
Author(s):  
Klaus Landwehr

The Oppel–Kundt illusion consists in the overestimation of the length of filled versus empty extents. Two experiments explored its relation to the horizontal-vertical illusion, which consists in the overestimation of the length of vertical versus horizontal extents, and to the oblique effect, which consists in poorer discriminative sensitivity for obliquely as opposed to horizontally or vertically oriented stimuli. For Experiment 1, Kundt’s (1863) original stimulus was rotated in steps of 45° full circle around 360°. For Experiment 2, one part of the stimulus remained at a horizontal or vertical orientation, whereas the other part was tilted 45° or 90°. The Oppel–Kundt illusion was at its maximum at a horizontal orientation of the stimulus. The illusion was strongly attenuated with L-type figures when the vertical part was empty, but not enhanced when this part was filled, suggesting that the horizontal-vertical illusion only acts on nontextured extents. There was no oblique effect.


Author(s):  
Charles Spence

Plating food beautifully has traditionally been seen as more of an art than a science. However, in recent years, a growing body of research in the field of empirical aesthetics has started to demonstrate that the art of beautiful plating can, in fact, be studied scientifically. What is more, the results of such research are now providing actionable insights concerning how to deliver the most aesthetically pleasing dishes. In fact, there is an intriguing parallel here between the visual aesthetics of painting and plating. It turns out that a number (but by no means all) of the aesthetic rules worked out previously for painting, such as balance, harmony, and the aesthetic oblique effect, also influence people’s judgments of aesthetic plating in much the same way. And while people undoubtedly do generally find larger portions of food more attractive, a number of the preferences that people have been demonstrated to exhibit appear to be “disinterested” (in the Kantian sense), thus qualifying them as genuinely aesthetic judgments. Recent chef/scientist collaborations that have started to deliberately elicit different kinds of affective responses from diners (such as, for example, surprise, “the aesthetic aha,” and perhaps even a sense of awe) are also discussed briefly. While questions concerning the cross-cultural generalizability of many of the findings summarized here remain (awaiting further research), progress is undoubtedly being made in this new and intriguing field of empirical aesthetics.


2020 ◽  
Author(s):  
Nian-Sheng Ju ◽  
Shu-Chen Guan ◽  
Louis Tao ◽  
Shi-Ming Tang ◽  
Cong Yu

Abstract Orientation tuning is a fundamental response property of V1 neurons and has been extensively studied with single-/multiunit recording and intrinsic signal optical imaging. Long-term 2-photon calcium imaging allows simultaneous recording of hundreds of neurons at single neuron resolution over an extended time in awake macaques, which may help elucidate V1 orientation tuning properties in greater detail. We used this new technology to study the microstructures of orientation functional maps, as well as population tuning properties, in V1 superficial layers of 5 awake macaques. Cellular orientation maps displayed horizontal and vertical clustering of neurons according to orientation preferences, but not tuning bandwidths, as well as less frequent pinwheels than previous estimates. The orientation tuning bandwidths were narrower than previous layer-specific single-unit estimates, suggesting more precise orientation selectivity. Moreover, neurons tuned to cardinal and oblique orientations did not differ in quantities and bandwidths, likely indicating minimal V1 representation of the oblique effect. Our experimental design also permitted rough estimates of length tuning. The results revealed significantly more end-stopped cells at a more superficial 150 μm depth (vs. 300 μm), but unchanged orientation tuning bandwidth with different length tuning. These results will help construct more precise models of V1 orientation processing.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Renyu Ye ◽  
Xinsheng Liu

AbstractThis paper investigates the influence of a known cue on the oblique effect in orientation identification and explains how subjects integrate cue information to identify target orientations. We design the psychophysical task in which subjects estimate target orientations in the presence of a known oriented reference line. For comparison the control experiments without the reference are conducted. Under Bayesian inference framework, a cue integration model is proposed to explain the perceptual improvement in the presence of the reference. The maximum likelihood estimates of the parameters of our model are obtained. In the presence of the reference, the variability and biases of identification are significantly reduced and the oblique effect of orientation identification is obviously weakened. Moreover, the identification of orientation in the vicinity of the reference line is consistently biased away from the reference line (i.e., reference repulsion). Comparing the predictions of the model with the experimental results, the Bayesian Least Squares estimator under the Variable-Precision encoding (BLS_VP) provides a better description of the experimental outcomes and captures the trade-off relationship of bias and precision of identification. Our results provide a useful step toward a better understanding of human visual perception in context of the known cues.


Perception ◽  
2020 ◽  
Vol 49 (10) ◽  
pp. 1005-1025
Author(s):  
D. Hipp ◽  
S. Olsen ◽  
P. Gerhardstein

Visual perception depends fundamentally on statistical regularities in the environment to make sense of the world. One such regularity is the orientation anisotropy typical of natural scenes; most natural scenes contain slightly more canonical (horizontal and vertical) information than oblique information. This property is likely a primary cause of the oblique effect in which subjects experience greater perceptual fluency with horizontally and vertically oriented content than oblique. Recent changes in the visual environment, including the “carpentered” content in urban scenes and the framed, caricatured content in digital screen media presentations, may have altered the typical (natural) level of orientation anisotropy. The current work evaluated whether digital visual experience, or visual experience with framed digital content, has the potential to alter the magnitude of the oblique effect in visual perception. Experiment 1 successfully established a novel eye-tracking method capable of indexing the visual oblique effect quickly and reliably and demonstrated the oblique effect. Experiment 2 used this method and found that one session of exposure to a specific video game altered visual orientation perception. Taken together, these results indicate that exposure to the realistic, but caricatured scene statistics of digital screen media, can alter visual contour perception in one session.


2020 ◽  
Author(s):  
Andrea Bertana ◽  
Andrey Chetverikov ◽  
Ruben S. van Bergen ◽  
Sam Ling ◽  
Janneke F.M. Jehee

AbstractAlthough confidence is commonly believed to be an essential element in decision making, it remains unclear what gives rise to one’s sense of confidence. Recent Bayesian theories propose that confidence is computed, in part, from the degree of uncertainty in sensory evidence. Alternatively, observers can use physical properties of the stimulus as a heuristic to confidence. In the current study, we developed ideal observer models for either hypothesis and compared their predictions against human data obtained from psychophysical experiments. Participants reported the orientation of a stimulus, and their confidence in this estimate, under varying levels of internal and external noise. As predicted by the Bayesian model, we found a consistent link between confidence and behavioral variability for a given stimulus orientation. Confidence was higher when orientation estimates were more precise, for both internal and external sources of noise. However, we observed the inverse pattern when comparing between stimulus orientations: although observers gave more precise orientation estimates for cardinal orientations (a phenomenon known as the oblique effect), they were more confident about oblique orientations. We show that these results are well explained by a strategy to confidence that is based on the perceived amount of noise in the stimulus. Altogether, our results suggest that confidence is not always computed from the degree of uncertainty in one’s perceptual evidence, but can instead be based on visual cues that function as simple heuristics to confidence.


2020 ◽  
Author(s):  
Marlou N Perquin ◽  
Mason Taylor ◽  
Jarred Lorusso ◽  
James Kolasinski

AbstractHuman machine interfaces are increasingly designed to reduce our reliance on the dominantly used senses of vision and audition. Many emerging technologies are attempting to convey complex spatiotemporal information via tactile percepts shown to be effective in the visual domain, such as shape and motion. Despite the intuitive appeal of touch as a method of feedback, we do not know to what extent the hand can substitute for the retina in this way. Here we ask whether the tactile system can be used to perceive complex whole hand motion stimuli, and whether it exhibits the same kind of established perceptual biases as reported in the visual domain. Using ultrasound stimulation, we were able to project complex moving dot percepts onto the palm in mid-air, over 30cm above an emitter device. We generated dot kinetogram stimuli involving motion in three different directional axes (‘Horizontal’, ‘Vertical’, and ‘Oblique’) on the ventral surface of the hand. We found clear evidence that participants were able to discriminate tactile motion direction. Furthermore, there was a marked directional bias in motion perception: participants were better and more confident at discriminating motion in the vertical and horizontal axes of the hand, compared to those stimuli moving obliquely. This pattern directly mirrors the perceptional biases that have been robustly reported in the visual field, termed the ‘Oblique Effect’. These data show the existence of biases in motion perception that transcend sensory modality. Furthermore, we extend the Oblique Effect to a whole hand scale, using motion stimuli presented on the broad and relatively low acuity surface of the palm, away from the densely innervated and much studied fingertips. These findings also highlight targeted ultrasound stimulation as a versatile means by which to convey potentially complex spatial and temporal information without the need for a user to wear or touch a device. This ability is particularly attractive as a potential feedback mechanism for application in contact-free human machine interfaces.


2019 ◽  
Vol 135 ◽  
pp. 107236 ◽  
Author(s):  
Jamie C. Peven ◽  
Yurong Chen ◽  
Lei Guo ◽  
Liang Zhan ◽  
Elizabeth A. Boots ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document