Visual cortex neurons in monkey and cat: Effect of contrast on the spatial and temporal phase transfer functions

1995 ◽  
Vol 12 (6) ◽  
pp. 1191-1210 ◽  
Author(s):  
Duane G. Albrecht

AbstractThe responses of simple cells (recorded from within the striate visual cortex) were measured as a function of the contrast and the frequency of sine-wave grating patterns in order to explore the effect of contrast on the spatial and temporal phase transfer functions and on the spatiotemporal receptive field. In general, as the contrast increased, the phase of the response advanced by approximately 45 ms (approximately one-quarter of a cycle for frequencies near 5 Hz), although the exact value varied from cell to cell. The dynamics of this phase-advance were similar to the dynamics of the amplitude: the amplitude and the phase increased in an accelerating fashion at lower contrasts and then saturated at higher contrasts. Further, the gain for both the amplitude and the phase appeared to be governed by the magnitude of the contrast rather than the magnitude of the response. For the spatial phase transfer function, variations in contrast had little or no systematic effect; all of the phase responses clustered around a single straight line, with a common slope and intercept. This implies that the phase-advance was not due to a change in the spatial properties of the neuron; it also implies that the phase-advance was not systematically related to the magnitude of the response amplitude. On the other hand, for the temporal phase transfer function, the phase responses fell on five straight lines, related to the five steps in contrast. As the contrast increased, the phase responses advanced such that both the slope and the intercept were affected. This implies that the phase-advance was a result of contrast-induced changes in both the response latency and the shape/symmetry of the temporal receptive field.

2012 ◽  
Vol 37 (4) ◽  
pp. 447-454
Author(s):  
James W. Beauchamp

Abstract Source/filter models have frequently been used to model sound production of the vocal apparatus and musical instruments. Beginning in 1968, in an effort to measure the transfer function (i.e., transmission response or filter characteristic) of a trombone while being played by expert musicians, sound pressure signals from the mouthpiece and the trombone bell output were recorded in an anechoic room and then subjected to harmonic spectrum analysis. Output/input ratios of the signals’ harmonic amplitudes plotted vs. harmonic frequency then became points on the trombone’s transfer function. The first such recordings were made on analog 1/4 inch stereo magnetic tape. In 2000 digital recordings of trombone mouthpiece and anechoic output signals were made that provide a more accurate measurement of the trombone filter characteristic. Results show that the filter is a high-pass type with a cutoff frequency around 1000 Hz. Whereas the characteristic below cutoff is quite stable, above cutoff it is extremely variable, depending on level. In addition, measurements made using a swept-sine-wave system in 1972 verified the high-pass behavior, but they also showed a series of resonances whose minima correspond to the harmonic frequencies which occur under performance conditions. For frequencies below cutoff the two types of measurements corresponded well, but above cutoff there was a considerable difference. The general effect is that output harmonics above cutoff are greater than would be expected from linear filter theory, and this effect becomes stronger as input pressure increases. In the 1990s and early 2000s this nonlinear effect was verified by theory and measurements which showed that nonlinear propagation takes place in the trombone, causing a wave steepening effect at high amplitudes, thus increasing the relative strengths of the upper harmonics.


1995 ◽  
Vol 74 (2) ◽  
pp. 779-792 ◽  
Author(s):  
A. Das ◽  
C. D. Gilbert

1. Receptive field (RF) sizes of neurons in adult primary visual cortex are dynamic, expanding and contracting in response to alternate stimulation outside and within the RF over periods ranging from seconds to minutes. The substrate for this dynamic expansion was shown to lie in cortex, as opposed to subcortical parts of the visual pathway. The present study was designed to examine changes in cortical connection strengths that could underlie this observed plasticity by measuring the changes in cross-correlation histograms between pairs of primary visual cortex neurons that are induced to dynamically change their RF sizes. 2. Visually driven neural activity was recorded from single units in the superficial layers of primary visual cortex in adult cats, with two independent electrodes separated by 0.1–5 mm at their tips, and cross-correlated on-line. The neurons were then conditioned by stimulation with an “artificial scotoma,” a field of flashing random dots filling the region of visual space around a blank rectangle enclosing the RFs of the recorded neurons. The neuronal RFs were tested for expansion and their visually driven output again cross-correlated. After this, the neurons were stimulated vigorously through their RF centers to induce the field to collapse, and the visually driven output from the collapsed RFs was again cross-correlated. Cross-correlograms obtained before and after conditioning, and after RF collapse, were normalized by their flanks to control for changes in peak size due solely to fluctuations in spike rate. 3. A total of 37 pairs of neurons that showed distinct cross-correlogram peaks, and whose RF borders were clearly discernible both before and after conditioning, were used in the final analysis. Of these neuron pairs, conditioning led to a clear expansion of RF boundaries in 28 pairs, whereas in 9 pairs the RFs did not expand. RFs that did expand showed no significant shifts in their orientation preference, orientation selectivity, or ocularity. 4. When the RFs of a pair of neurons expanded with conditioning, the area of the associated flank-normalized cross-correlogram peaks also increased (by a factor ranging from 0.84 up to 3.5). Correlograms returned to their preconditioning values when RFs collapsed.(ABSTRACT TRUNCATED AT 400 WORDS)


1991 ◽  
Vol 113 (2) ◽  
pp. 313-315 ◽  
Author(s):  
S. Jayasuriya ◽  
M. A. Franchek

Presented in this note is a class of stable, minimum phase transfer functions whose impulse response is non-negative. A simple sufficiency criterion based on the relative locations of the poles and zeros characterizes the class. When the transfer function is in a factored form the sign of its impulse response may either be obtained by inspection or is inconclusive. A need for identifying such transfer functions was recently established by Jayasuriya (1989) who showed that a controller designed on the basis of maximizing a step input disturbance will reject a persistent disturbance bounded by the size of the maximized step if and only if the closed-loop system’s impulse response is of one sign.


2019 ◽  
Vol 121 (6) ◽  
pp. 2364-2378 ◽  
Author(s):  
N. V. Swindale ◽  
M. A. Spacek

It is generally thought that apart from receptive field differences, such as preferred orientation and spatial frequency selectivity, primary visual cortex neurons are functionally similar to each other. However, the genetic diversity of cortical neurons plus the existence of inputs additional to those required to explain known receptive field properties might suggest otherwise. Here we report the existence of desynchronized states in anesthetized cat area 17 lasting up to 45 min, characterized by variable narrow-band local field potential (LFP) oscillations in the range 2–100 Hz and the absence of a synchronized 1/ f frequency spectrum. During these periods, spontaneously active neurons phase-locked to variable subsets of LFP oscillations. Individual neurons often ignored frequencies that others phase-locked to. We suggest that these desynchronized periods may correspond to REM sleep-like episodes occurring under anesthesia. Frequency-selective codes may be used for signaling during these periods. Hence frequency-selective combination and frequency-labeled pathways may represent a previously unsuspected dimension of cortical organization. NEW & NOTEWORTHY We investigated spontaneous neuronal firing during periods of desynchronized local field potential (LFP) activity, resembling REM sleep, in anesthetized cats. During these periods, neurons synchronized their spikes to specific phases of multiple LFP frequency components, with some neurons ignoring frequencies that others were synchronized to. Some neurons fired at phase alignments of frequency pairs, thereby acting as phase coincidence detectors. These results suggest that internal brain signaling may use frequency combination codes to generate temporally structured spike trains.


2009 ◽  
Vol 102 (5) ◽  
pp. 2900-2909 ◽  
Author(s):  
Lauri Nurminen ◽  
Markku Kilpeläinen ◽  
Pentti Laurinen ◽  
Simo Vanni

Contextual modulation is a fundamental feature of sensory processing, both on perceptual and on single-neuron level. When the diameter of a visual stimulus is increased, the firing rate of a cell typically first increases (summation field) and then decreases (surround field). Such an area summation function draws a comprehensive profile of the receptive field structure of a neuron, including areas outside the classical receptive field. We investigated area summation in human vision with psychophysics and functional magnetic resonance imaging (fMRI). The stimuli were similar to those used drifting sine wave gratings in previous macaque single-cell area summation studies. A model was developed to facilitate comparison of area summation in fMRI to area summation in psychophysics and single cells. The model consisted of units with an antagonistic receptive field structure found in single cells in the primary visual cortex. The receptive field centers of the model neurons were distributed in the region of the visual field covered by a single voxel. The measured area summation functions were qualitatively similar to earlier single-cell data. The model with parameters derived from psychophysics captured the spatial structure of the summation field in the primary visual cortex as measured with fMRI. The model also generalized to a novel situation in which the neural population was displaced from the stimulus center. The current study shows that contextual modulation arises from similar spatially antagonistic and overlapping excitatory and inhibitory mechanisms, both in single cells and in human vision.


1995 ◽  
Vol 27 (2) ◽  
pp. 105-109
Author(s):  
R. V. Novikova ◽  
I. A. Shevelev ◽  
N. A. Lazareva ◽  
A. S. Tikhomirov ◽  
G. A. Sharaev

Author(s):  
Peter Rez

In high resolution microscopy the image amplitude is given by the convolution of the specimen exit surface wave function and the microscope objective lens transfer function. This is usually done by multiplying the wave function and the transfer function in reciprocal space and integrating over the effective aperture. For very thin specimens the scattering can be represented by a weak phase object and the amplitude observed in the image plane is1where fe (Θ) is the electron scattering factor, r is a postition variable, Θ a scattering angle and x(Θ) the lens transfer function. x(Θ) is given by2where Cs is the objective lens spherical aberration coefficient, the wavelength, and f the defocus.We shall consider one dimensional scattering that might arise from a cross sectional specimen containing disordered planes of a heavy element stacked in a regular sequence among planes of lighter elements. In a direction parallel to the disordered planes there will be a continuous distribution of scattering angle.


Sign in / Sign up

Export Citation Format

Share Document