The effects of a luminanace-modulated background on the grating-evoked cortical potential in the cat

1989 ◽  
Vol 3 (6) ◽  
pp. 563-572 ◽  
Author(s):  
John A. Baro ◽  
Stephen Lehmkuhle

AbstractAveraged grating-evoked cortical potentials were recorded from area 17 of awake cats. Peak latency of early components of the visual-evoked potential (VEP) response to stimulus onset increased as a function of spatial frequency, while amplitude tended to be largest at intermediate spatial frequencies. Latency increased and amplitude generally decreased to lower spatial-frequency stimuli (<0.25 cycle/deg) in the presence of a uniform flickering field (UFF). The UFF had a relatively small or opposite effect on peak latency and amplitude for higher spatial-frequency stimuli (>0.50 cycle/deg). The VEP response to stimulus offset was present only at low spatial frequencies and was virtually eliminated by the presence of the UFF. The effects were similar whether the target and UFF background were simultaneously presented or briefly separated; however, the UFF had no effect when the two were spatially separated. The effects of the UFF background on VEP onset response increased with increasing temporal frequency from 2–8 Hz; offset responses were affected similarly at all temporal frequencies. These effects are similar to those observed in humans and suggest that two spatio-temporally tuned mechanisms contribute to the early VEP response. In the cat, the mechanisms seem to correspond to X and Y cells in the dorsal lateral geniculate nucleus.

1989 ◽  
Vol 62 (2) ◽  
pp. 526-543 ◽  
Author(s):  
W. Guido ◽  
N. Tumosa ◽  
P. D. Spear

1. X, Y, and W cells in the A and C layers of the cat's dorsal lateral geniculate nucleus (LGN) were tested for responses to stimulation of the nondominant eye. The main purpose was to determine the incidence of nondominant-eye excitation and inhibition among different classes of cells and to examine the spatial-frequency tuning of responses to the nondominant eye. 2. Of 198 cells that were tested with drifting sine-wave gratings presented to the nondominant eye, 109 (55%) showed statistically significant responses. Four types of responses were observed: an increase in the mean discharge rate (F0 excitation), a decrease in the mean discharge rate (F0 inhibition), an increased modulation at the fundamental frequency of the grating (F1 excitation), and a decreased modulation at the fundamental frequency of the grating (F1 inhibition). Overall, 29% of the cells responded with inhibition, 24% responded with excitation, and 2% showed both excitation and inhibition, depending upon the spatial frequency and/or the harmonic response component. The relative incidence of excitation and inhibition was similar for X, Y, and W cells, for cells with on-center and off-center receptive fields, for cells with different receptive-field eccentricities, and for cells in each LGN layer. In addition, within layers A and A1, responses were similar for cells at different distances from the laminar borders. 3. Spatial-frequency response functions indicated that cells could have band-pass or low-pass spatial-frequency tuning through the nondominant eye. Band-pass cells tended to be narrowly tuned (less than or equal to 1 octave), and low-pass cells responded to a broader range of spatial frequencies. These properties were similar for X, Y, and W cells. Spatial resolution tended to be low (less than or equal to 0.8 c/deg for most cells), although a few cells responded to the highest spatial frequency tested (5.4 c/deg). Likewise, optimal spatial frequency was low (less than or equal to 0.2 c/deg) for most cells. These properties were similar for X and Y cells, and there was a weak tendency for X and Y cells to have higher optimal spatial frequencies and spatial resolutions than W cells. 4. In terms of absolute change in activity, responses to drifting gratings were weak. However, cells that were inhibited generally showed 20-60% decreases in activity to the optimal spatial frequency, and cells that were excited generally showed 40-100% increases. Response amplitudes were similar for X, Y, and W cells.(ABSTRACT TRUNCATED AT 400 WORDS)


1986 ◽  
Vol 56 (2) ◽  
pp. 523-541 ◽  
Author(s):  
J. S. Tootle ◽  
M. J. Friedlander

We recorded the responses to visual stimulation of single neurons in the A-layers of the dorsal lateral geniculate nucleus (LGNd) of 4- to 5-wk-old kittens and adult cats. Visual stimuli were generated on a cathode-ray tube (CRT) display and consisted of circular spots and annuli whose contrast was twice the threshold for each neuron and was modulated about a background luminance of 28 cd/m2 at 0.5 Hz. Neural responses were collected as interspike intervals and displayed as instantaneous firing rates for individual trials. From the responses to a series of sizes of spot stimuli, area-response functions were constructed and used to derive a quantitative measure of the strength of the receptive field (RF) surround inhibition of each neuron, the spatial density minimum ([SDmin[). To separate neural from optical factors that affect measurements of surround inhibition, published values for the posterior nodal distances of the kitten and adult eye were used to scale stimuli in terms of the retinal area subtended. Of 153 kitten and 95 adult LGNd neurons studied, the responses to a complete series of spot stimuli of different sizes (areas) were obtained for 52 kitten neurons [44 with linear spatial summation (L) and 8 with nonlinear spatial summation (NL)] and 45 adult (24 X-and 21 Y-) neurons. In addition, intracellular recordings were made from 30 of the kitten neurons that were filled iontophoretically with horseradish peroxidase (HRP) and were evaluated structurally. In the adult, neurons were classified as X-or Y-cells on the basis of a battery of physiological properties, including linearity of spatial summation, latency to electrical stimulation of the optic chiasm, and ability to respond reliably to rapidly moving stimuli. Kitten neuronal responses allowed them to be clearly identified as exhibiting linear or nonlinear spatial summation, but application of additional criteria produced ambiguous results for classification into X-or Y-categories. Kitten L or NL neurons showed differences typical of adult X-and Y-cells on some [e.g., RF center size (P less than 0.01)] but not other [e.g., latency to stimulation of optic chiasm (P greater than 0.40)] properties. In addition, by direct comparison of morphological features with these physiological responses, some kitten cells with adult X-cell physiological properties on these tests were found to have typical adult Y-cell somadendritic structure.(ABSTRACT TRUNCATED AT 400 WORDS)


Perception ◽  
1996 ◽  
Vol 25 (1_suppl) ◽  
pp. 12-12
Author(s):  
P J Bex ◽  
F A J Verstraten ◽  
I Mareschal

The motion aftereffect (MAE) was used to study the temporal-frequency and spatial-frequency selectivity of the visual system at suprathreshold contrasts. Observers adapted to drifting sine-wave gratings of a range of spatial and temporal frequencies. The magnitude of the MAE induced by the adaptation was measured with counterphasing test gratings of a variety of spatial and temporal frequencies. Independently of the spatial or temporal frequency of the adapting grating, the largest MAE was found with slowly counterphasing test gratings (∼0.125 – 0.25 Hz). For slowly counterphasing test gratings (<∼2 Hz), the largest MAEs were found when the test grating was of similar spatial frequency to that of the adapting grating, even at very low spatial frequencies (0.125 cycle deg−1). However, such narrow spatial frequency tuning was lost when the temporal frequency of the test grating was increased. The data suggest that MAEs are dominated by a single, low-pass temporal-frequency mechanism and by a series of band-pass spatial-frequency mechanisms at low temporal frequencies. At higher test temporal frequencies, the loss of spatial-frequency tuning implicates separate mechanisms with broader spatial frequency tuning.


1983 ◽  
Vol 50 (1) ◽  
pp. 240-264 ◽  
Author(s):  
S. C. Mangel ◽  
J. R. Wilson ◽  
S. M. Sherman

We measured response properties of X- and Y-cells from laminae A and A1 of the dorsal lateral geniculate nucleus of monocularly lid-sutured cats at 8, 12, 16, 24, and 52-60 wk of age. Visual stimuli consisted of small spots of light and vertically oriented sine-wave gratings counterphased at a rate of 2 cycles/s. In cats as young as 8 wk of age, nondeprived and deprived neurons could be clearly identified as X-cells or Y-cells with criteria previously established for adult animals. Nonlinear responses of Y-cells from 8- and 12-wk-old cats were often temporally labile; that is, the amplitude of the nonlinear response of nondeprived and deprived cells increased or decreased suddenly. A similar lability was not noted for the linear response component. This phenomenon rarely occurred in older cats. At 8 wk of age, Y-cell proportions (number of Y-cells/total number of cells) in nondeprived and deprived A-laminae were approximately equal. By 12 wk of age and thereafter, the proportion of Y-cells in deprived laminae was significantly lower than that in nondeprived laminae. At no age was there a systematic difference in response properties (spatial resolution, latency to optic chiasm stimulation, etc.) for Y-cells between deprived and nondeprived laminae. Spatial resolution, defined as the highest spatial frequency to which a cell would respond at a contrast of 0.6, was similar for nondeprived and deprived X-cells until 24 wk of age. In these and older cats, the mean spatial resolution of deprived X-cells was lower than that of nondeprived X-cells. This difference was noted first for lamina A1 at 24 wk of age and later for lamina A at 52-60 wk of age. The average latency of X-cells to optic chiasm stimulation was slightly greater in deprived laminae than in nondeprived laminae. No such difference was seen for Y-cells. Cells with poor and inconsistent responses were encountered infrequently but were observed far more often in deprived laminae than in nondeprived laminae. Lid suture appears to affect the development of geniculate X- and Y-cells in very different ways. Not only is the final pattern of abnormalities quite different between these cell groups, but the developmental dynamics of these abnormalities also differ.


1984 ◽  
Vol 52 (5) ◽  
pp. 911-920 ◽  
Author(s):  
J. Frascella ◽  
S. Lehmkuhle

Extracellular responses of Y-cells in the A-laminae and in lamina C of the cat dorsal lateral geniculate nucleus were recorded and compared for several sine-wave grating presentations. Both spatial and temporal contrast sensitivity functions were determined for these cells as well as suprathreshold response functions at 0.2 and 0.4 contrast. Qualitatively, the responses of the lamina C Y-cells were very similar to Y-cells of the A-laminae; differences were of a quantitative nature. At threshold, lamina C Y-cells were more sensitive at all spatial and temporal frequencies tested. Suprathreshold results showed no major differences in fundamental response amplitude between laminar Y-cells. Interlaminar differences were found with respect to second harmonic response amplitude. Lamina C Y-cells gave the largest overall second harmonic response for all stimulus conditions. A trend was observed for these laminar Y-cells such that the second harmonic responses were highest for Y-cells of lamina C, intermediate for lamina A Y-cells, and lowest for those of lamina A1. Based on differences in projection pattern and present electrophysiological results, we conclude that the lamina C Y-cells may represent a population of cells that is distinct from A-laminae Y-cells. These lamina C Y-cells provide a significant input to visual cortex.


1994 ◽  
Vol 11 (5) ◽  
pp. 927-938 ◽  
Author(s):  
Kirk G. Thompson ◽  
Yifeng Zhou ◽  
Audie G. Leventhal

AbstractDrifting sinusoidal gratings, moving bars, and moving spots were employed to study the direction sensitivity of 425 neurons in the A laminae of the cat's LGNd. Thirty-two percent of X- and Y-type LGNd relay cells exhibit significant direction sensitivity when tested with drifting sinusoidal gratings. X and Y cells exhibit the same degree of direction sensitivity. Moving spots and bars elicit direction specific responses from LGNd cells that are consistent with those elicited when drifting sinusoidal gratings are employed. For cells that are both orientation and direction sensitive, the preferred direction tends to be orthogonal to the preferred orientation. In general, direction sensitivity is strongest at relatively low spatial frequencies, well below the spatial-frequency cutoff for the cell. The presence of significant numbers of direction-sensitive LGNd cells raises the possibility that subcortical direction specificity is important for the generation of this property in the visual cortex.


Sign in / Sign up

Export Citation Format

Share Document