Large-scale morophological survey of rat retinal ganglion cells

2002 ◽  
Vol 19 (4) ◽  
pp. 483-493 ◽  
Author(s):  
WENZHI SUN ◽  
NING LI ◽  
SHIGANG HE

Ganglion cells in an isolated wholemount preparation of the rat retina were labeled using the “DiOlistic” labeling method (Gan et al., 2000) and were classified according to their morphological properties. Tungsten particles coated with a lipophilic dye (DiI) were propelled into the wholemount retina using a gene gun. When a dye-coated particle contacted the cell membrane, the entire cell was labeled. The ganglion cells were classified into four types based on their soma size, dendritic-field size, branching pattern, and level of stratification. Broadly monostratified cells were classified into three types: RGA cells (large soma, large dendritic field); RGB cells (small- to medium-sized soma, small- to medium-sized dendritic field); and RGC cells (small- to medium-sized soma, medium-to-large dendritic field). Bistratified cells were classified as RGD. Several subtypes were identified within each ganglion cell group. A number of new subtypes were discovered and added into the existing catalog, among them were two types of bistratified cells. This study therefore represents the most complete morphological classification of rat retinal ganglion cells available to date.

2000 ◽  
Vol 17 (4) ◽  
pp. 567-578 ◽  
Author(s):  
BETH B. PETERSON ◽  
DENNIS M. DACEY

To study the detailed morphology of human retinal ganglion cells, we used intracellular injection of horseradish peroxidase and Neurobiotin to label over 1000 cells in an in vitro, wholemount preparation of the human retina. This study reports on the morphology of 119 wide-field bistratified and 42 diffuse ganglion cells. Cells were analyzed quantitatively on the basis of dendritic-field size, soma size, and the extent of dendritic branching. Bistratified cells were similar in dendritic-field diameter (mean ± s.d. = 682 ± 130 μm) and soma diameter (mean ± s.d. = 18 ± 3.3 μm) but showed a broad distribution in the extent of dendritic branching (mean ± s.d. branch point number = 67 ± 32; range = 15–167). Differences in the extent of branching and in dendritic morphology and the pattern of branching suggest that the human retina may contain at least three types of wide-field bistratified cells. Diffuse ganglion cells comprised a largely homogeneous group whose dendrites ramified throughout the inner plexiform layer. The diffuse cells had similar dendritic-field diameters (mean ± s.d. = 486 ± 113 μm), soma diameters (mean ± s.d. = 16 ± 2.3 μm), and branch points numbers (mean ± s.d. = 92 ± 32). The majority had densely branched dendritic trees and thin, very spiny dendrites with many short, fine, twig-like thorny processes. Five of the diffuse cells had much more sparsely branched dendritic trees (<50 branch points) and less spiny dendrites, suggesting that there are possibly two types of diffuse ganglion cells in human retina. Although the presence of a diversity of large bistratified and diffuse ganglion cells has been observed in a variety of mammalian retinas, little is known about the number of cell types, their physiological properties, or their central projections. Some of the human wide-field bistratified cells in the present study, however, show morphological similarities to monkey large bistratified cells that are known to project to the superior colliculus.


1996 ◽  
Vol 13 (6) ◽  
pp. 1011-1029 ◽  
Author(s):  
Elizabeth S. Yamada ◽  
Luiz Carlos L. Silveira ◽  
V. Hugh Perry

AbstractMale Cebus monkeys are all dichromats, but about two thirds of the females are trichromats. M and P retinal ganglion cells were studied in the male Cebus monkey to investigate the relationship of their morphology to retinal eccentricity. Retinal ganglion cells were retrogradely labeled after optic nerve deposits of biocytin to reveal their entire dendritic tree. Cebus M and P ganglion cell morphology revealed by biocytin retrograde filling is similar to that described for macaque and human M and P ganglion cells obtained by in vitro intracellular injection of HRP and neurobiotin. We measured 264 and 441 M and P ganglion cells, respectively. M ganglion cells have larger dendritic field and cell body size than P ganglion cells at any comparable temporal or nasal eccentricity. Dendritic trees of both M and P ganglion cells are smaller in the nasal than in the temporal region at eccentricities greater than 5 mm and 2 mm for M and P ganglion cells, respectively. The depth of terminal dendrites allows identification of both inner and outer subclasses of M and P ganglion cells. The difference in dendritic tree size between inner and outer cells is small or absent. Comparison between Cebus and Macaca shows that M and P ganglion cells have similar sizes in the central retinal region. The results support the view that M and P pathways are similarly organized in diurnal dichromat and trichromat primates.


2021 ◽  
Vol 15 ◽  
Author(s):  
Hui Chen ◽  
Hong-Ping Xu ◽  
Ping Wang ◽  
Ning Tian

It was well documented that both the size of the dendritic field and receptive field of retinal ganglion cells (RGCs) are developmentally regulated in the mammalian retina, and visual stimulation is required for the maturation of the dendritic and receptive fields of mouse RGCs. However, it is not clear whether the developmental changes of the RGC receptive field correlate with the dendritic field and whether visual stimulation regulates the maturation of the dendritic field and receptive field of RGCs in a correlated manner. The present work demonstrated that both the dendritic and receptive fields of RGCs continuously develop after eye opening. However, the correlation between the developmental changes in the receptive field size and the dendritic field varies among different RGC types. These results suggest a continuous change of synaptic converging of RGC synaptic inputs in an RGC type-dependent manner. Besides, light deprivation impairs both the development of dendritic and receptive fields.


2003 ◽  
Vol 20 (3) ◽  
pp. 273-283 ◽  
Author(s):  
MATTHIAS OTT ◽  
BRENO BELLINTANI-GUARDIA

Retinal ganglion cells (RGCs) usually increase their dendritic field area with postnatal retinal growth. The mechanisms that regulate the postnatal shape of dendritic arbors in the growing retina are not well understood. Quantitative studies suffer from the difficulty of labeling specific subpopulations of RGCs selectively including their dendritic processes. In this study, we labeled displaced retinal ganglion cells (DGC) that are known to project to the accessory optic system (AOS) in juvenile and adult chameleons by retrograde transport of dextran amines. The complete population of DGCs was quantitatively screened for the effects of postnatal retinal growth on cell morphology, dendritic field coverage, and dendritic arbor size. The adult eye contained 2000 DGCs/retina. This number was already present at birth. The smaller size of the hatchling eye (approximately 1/3 of the adult size) led to higher densities of DGCs. The greatest accumulation of juvenile DGCs (two-fold higher compared to the adult) was found in the periphery of the retina where the greatest surface expansion was observed. DGC dendritic field areas were adjusted proportionally to this expansion in order to maintain a constant dendritic coverage. The increase of dendritic fields was mediated by two putative passive mechanisms: First, an elongation of individual dendrites similar to previous reports of postnatal RGC development in the retina of goldfish and chicks. Second, and more prominent, we observed that neighboring dendrites were pulled apart from each other. This resulted in a looser spacing of the initially tightly packed dendrites of each dendritic arbor. This dispersal of dendrites over a larger area was, due to its passive nature, proportional to the increase of the retinal surface and preserved a constant dendritic coverage irrespective of the animal's age and eye size.


Sign in / Sign up

Export Citation Format

Share Document