scholarly journals Center/surround organization of retinal bipolar cells: High correlation of fundamental responses of center and surround to sinusoidal contrasts

2011 ◽  
Vol 28 (3) ◽  
pp. 183-192 ◽  
Author(s):  
DWIGHT A. BURKHARDT ◽  
THEODORE M. BARTOLETTI ◽  
WALLACE B. THORESON

AbstractReceptive field organization of cone-driven bipolar cells was investigated by intracellular recording in the intact light-adapted retina of the tiger salamander (Ambystoma tigrinum). Centered spots and concentric annuli of optimum dimensions were used to selectively stimulate the receptive field center and surround with sinusoidal modulations of contrast at 3 Hz. At low contrasts, responses of both the center and surround of both ON and OFF bipolar cells were linear, showing high gain and thus contrast enhancement relative to cones. The contrast/response curves for the fundamental response, measured by a Fast Fourier Transform, reached half maximum amplitude quickly at 13% contrast followed by saturation at high contrasts. The variation of the normalized amplitude of the center and surround responses was remarkably similar, showing linear regression over the entire response range with very high correlations, r2 = 0.97 for both ON and OFF cells. The contrast/response curves of both center and surround for both ON and OFF cells were well fit (r2 = 0.98) by an equation for single-site binding. In about half the cells studied, the nonlinear waveforms of center and surround could be brought into coincidence by scaling and shifting the surround response in time. This implies that a nonlinearity, common to both center and surround, occurs after polarity inversion at the cone feedback synapse. Evidence from paired whole-cell recordings between single cones and OFF bipolar cells suggests that substantial nonlinearity is not due to transmission at the cone synapse but instead arises from intrinsic bipolar cell and network mechanisms. When sinusoidal contrast modulations were applied to the center and surround simultaneously, clear additivity was observed for small responses in both ON and OFF cells, whereas the interaction was strikingly nonadditive for large responses. The contribution of the surround was then greatly reduced, suggesting attenuation at the cone feedback synapse.

1999 ◽  
Vol 16 (4) ◽  
pp. 653-665 ◽  
Author(s):  
DAIYAN XIN ◽  
STEWART A. BLOOMFIELD

We studied the light-evoked responses of AII amacrine cells in the rabbit retina under dark- and light-adapted conditions. In contrast to the results of previous studies, we found that AII cells display robust responses to light over a 6–7 log unit intensity range, well beyond the operating range of rod photoreceptors. Under dark adaptation, AII cells showed an ON-center/OFF-surround receptive-field organization. The intensity–response profile of the center-mediated response component followed a dual-limbed sigmoidal function indicating a transition from rod to cone mediation as stimulus intensities were increased. Following light adaptation, the receptive-field organization of AII cells changed dramatically. Light-adapted AII cells showed both ON- and OFF-responses to stimulation of the center receptive field, but we found no evidence for an antagonistic surround. Interestingly, the OFF-center response appeared first following rapid light adaptation and was then replaced gradually over a 1–4 min period by the emerging ON-center response component. Application of the metabotropic glutamate receptor agonist APB, the ionotropic glutamate blocker CNQX, 8-bromo-cGMP, and the nitric oxide donor SNAP all showed differential effects on the various center-mediated responses displayed by dark- and light-adapted AII cells. Taken together, these pharmacological results indicated that different synaptic circuits are responsible for the generation of the different AII cell responses. Specifically, the rod-driven ON-center responses are apparently derived from rod bipolar cell synaptic inputs, whereas the cone-driven ON-center responses arise from signals crossing the gap junctions between AII cells and ON-center cone bipolar cells. Additionally, the OFF-center response of light-adapted AII cells reflects direct synaptic inputs from OFF-center cone bipolar cells to AII dendritic processes in the distal inner plexiform layer.


1980 ◽  
Vol 44 (6) ◽  
pp. 1214-1225 ◽  
Author(s):  
J. K. Terzis ◽  
R. W. Dykes

1. A total of 758 fibers were isolated from previously transected and repaired ulnar nerves of five baboons. These fibers were compared to fibers from normal and previously crushed nerves studied in an earlier experiment. 2. The conduction velocities of the proximal portion of the injured axons dropped below normal, and this reduction persisted until reinnervation appeared nearly complete. 3. The receptive-field organization and response characteristics of 79 cutaneous afferent fibers serving the glabrous skin were studied in detail and compared to cutaneous afferent fibers of normal and previously crushed nerves studied earlier. 4. Initially, receptive fields were small and irregular, and often one fiber served several distinct skin regions. Ten months later, most of these abnormalities were no longer apparent. 5. Thresholds for single impulses elicited by von Frey hairs remained elevated for up to 4 mo after the receptive field reappeared, but then dropped abruptly to a near-normal range. 6. After reinnervation, rapidly adapting fibers displayed tuning curves characteristic of their submodality, but thresholds were elevated and only began to approach the normal range 6 mo after reinnervation. 7. After reinnervation, slowly adapting fibers displayed stimulus-response curves with elevated thresholds and they tended to saturate at lower stimulus intensities than normal fibers. 8. When compared to the return of function following a crushing injury, axons that had been transected displayed a slower time course for the return to normal values of conduction velocity and threshold. Receptive-field organization also remained abnormal for a longer time period. 9. These data support the hypotheses that a) breaking the continuity of the Schwann cells and extracellular matrix that occurs during transection but not during crush is a major factor leading to errors of axonal regeneration in the distal stump, b) submodality specificity is a property of the regenerating axon, and c) regenerating axons are influenced by an internal or external cue, causing them to form and maintain a single relatively homogeneous receptive field.


2010 ◽  
Vol 28 (1) ◽  
pp. 69-75 ◽  
Author(s):  
DWIGHT A. BURKHARDT

AbstractMuch of what is currently known about the visual response of retinal bipolar cells is based on studies of rod-dominant responses to flashes in the dark in the isolated retina. This minireview summarizes quantitative findings on contrast processing in the intact light-adapted retina based on intracellular recording from more than 400 cone-driven bipolar cells in the tiger salamander: 1) In the main, the contrast responses of ON and OFF cells are surprisingly similar, suggesting a need to refine the view that ON and OFF cells provide the selective substrates for processing of positive and negative contrasts, respectively. 2) Overall, the response is quite nonlinear, showing very high gain for small contrasts, some 10–15 times greater than that of cones, but then quickly approaches saturation for higher contrasts. 3) Under optimal conditions of light adaptation, both classes of bipolar cells show evidence for efficient coding with respect to the contrasts in natural images. 4) There is a marked diversity within both the ON and OFF bipolar cell populations and an absence of discrete subtypes. The dynamic ranges bracket the range of contrasts in nature. 5) For both ON and OFF cells, the receptive field organization shows a striking symmetry between center and surround for responses of the same polarity and thus opposite contrast polarities. 6) The latency difference between ON and OFF cells is about 30 ms, which seems qualitatively consistent with a delay due to the G-protein cascade in ON bipolar cells. 7) In sum, we report quantitative evidence for at least 11 transformations in signal processing that occur between the voltage response of cones and the voltage response of bipolar cells.


1994 ◽  
Vol 11 (4) ◽  
pp. 703-720 ◽  
Author(s):  
Ming Sun ◽  
A. B. Bonds

AbstractThe two-dimensional organization of receptive fields (RFs) of 44 cells in the cat visual cortex and four cells from the cat LGN was measured by stimulation with either dots or bars of light. The light bars were presented in different positions and orientations centered on the RFs. The RFs found were arbitrarily divided into four general types: Punctate, resembling DOG filters (11%); those resembling Gabor filters (9%); elongate (36%); and multipeaked-type (44%). Elongate RFs, usually found in simple cells, could show more than one excitatory band or bifurcation of excitatory regions. Although regions inhibitory to a given stimulus transition (e.g. ON) often coincided with regions excitatory to the opposite transition (e.g. OFF), this was by no means the rule. Measurements were highly repeatable and stable over periods of at least 1 h. A comparison between measurements made with dots and with bars showed reasonable matches in about 40% of the cases. In general, bar-based measurements revealed larger RFs with more structure, especially with respect to inhibitory regions. Inactivation of lower cortical layers (V-VI) by local GABA injection was found to reduce sharpness of detail and to increase both receptive-field size and noise in upper layer cells, suggesting vertically organized RF mechanisms. Across the population, some cells bore close resemblance to theoretically proposed filters, while others had a complexity that was clearly not generalizable, to the extent that they seemed more suited to detection of specific structures. We would speculate that the broadly varying forms of cat cortical receptive fields result from developmental processes akin to those that form ocular-dominance columns, but on a smaller scale.


Author(s):  
James M. Fox ◽  
David C. Van Essen ◽  
Tobias Delbrück ◽  
Jack Gallant ◽  
Charles H. Anderson

1995 ◽  
Vol 73 (4) ◽  
pp. 1721-1723 ◽  
Author(s):  
D. F. Bossut ◽  
E. R. Perl

1. The effects of sympathetic stimulation and close arterial injection of norepinephrine were tested on cutaneous myelinated-fiber (A delta) mechanical nociceptors [high-threshold mechanoreceptors-(MyHTMs)] from normal and from partially transsected nerves. 2. Neither sympathetic stimulation nor close arterial injection of norepinephrine (200 ng) excited MyHTMs (18) recorded from the uninjured great auricular nerve of adult rabbits. 3. MyHTMs (58) conducting across the site of partial cut lesions, made 2 to 28 days previously, had threshold and responsiveness to mechanical stimuli, receptive field organization, and absence of background discharge typical of such elements in normal nerve. 4. Four MyHTMs recorded from the injured nerves were excited by sympathetic stimulation and/or norepinephrine injection but only one gave more than two impulses within 60 s to either form of stimulation. 5. The meagerness of the sympathetic and adrenergic excitation of MyHTMs after nerve injury contrasts with that observed under similar conditions for C-fiber polymodal nociceptors. Therefore, induction of adrenergic responsiveness in nociceptors after partial denervation in cutaneous MyHTMs appears to be less important for mechanisms related to pathogenic pain than alterations in certain C-fiber nociceptors.


2010 ◽  
Vol 103 (2) ◽  
pp. 779-792 ◽  
Author(s):  
Stephen M. Rogers ◽  
George W. J. Harston ◽  
Fleur Kilburn-Toppin ◽  
Thomas Matheson ◽  
Malcolm Burrows ◽  
...  

Desert locusts ( Schistocerca gregaria ) can transform reversibly between the swarming gregarious phase and a solitarious phase, which avoids other locusts. This transformation entails dramatic changes in morphology, physiology, and behavior. We have used the lobula giant movement detector (LGMD) and its postsynaptic target, the descending contralateral movement detector (DCMD), which are visual interneurons that detect looming objects, to analyze how differences in the visual ecology of the two phases are served by altered neuronal function. Solitarious locusts had larger eyes and a greater degree of binocular overlap than those of gregarious locusts. The receptive field to looming stimuli had a large central region of nearly equal response spanning 120° × 60° in both phases. The DCMDs of gregarious locusts responded more strongly than solitarious locusts and had a small caudolateral focus of even further sensitivity. More peripherally, the response was reduced in both phases, particularly ventrally, with gregarious locusts showing greater proportional decrease. Gregarious locusts showed less habituation to repeated looming stimuli along the eye equator than did solitarious locusts. By contrast, in other parts of the receptive field the degree of habituation was similar in both phases. The receptive field organization to looming stimuli contrasts strongly with the receptive field organization of the same neurons to nonlooming local-motion stimuli, which show much more pronounced regional variation. The DCMDs of both gregarious and solitarious locusts are able to detect approaching objects from across a wide expanse of visual space, but phase-specific changes in the spatiotemporal receptive field are linked to lifestyle changes.


Sign in / Sign up

Export Citation Format

Share Document