scholarly journals Organization of the dorsal lateral geniculate nucleus in the mouse

2017 ◽  
Vol 34 ◽  
Author(s):  
DANIEL KERSCHENSTEINER ◽  
WILLIAM GUIDO

AbstractThe dorsal lateral geniculate nucleus (dLGN) of the thalamus is the principal conduit for visual information from retina to visual cortex. Viewed initially as a simple relay, recent studies in the mouse reveal far greater complexity in the way input from the retina is combined, transmitted, and processed in dLGN. Here we consider the structural and functional organization of the mouse retinogeniculate pathway by examining the patterns of retinal projections to dLGN and how they converge onto thalamocortical neurons to shape the flow of visual information to visual cortex.

2018 ◽  
Author(s):  
Michael S. Bienkowski ◽  
Nora L. Benavidez ◽  
Kevin Wu ◽  
Lin Gou ◽  
Marlene Becerra ◽  
...  

AbstractThe mammalian visual system is one of the most well-studied brain systems. Visual information from the retina is relayed to the dorsal lateral geniculate nucleus of the thalamus (LGd). The LGd then projects topographically to primary visual cortex (VISp) to mediate visual perception. In this view, the VISp is a critical network hub where visual information must traverse LGd-VISp circuits to reach higher-order ‘extrastriate’ visual cortices. However, decades of conflicting reports in a variety of mammals support or refute the existence of extrastriate LGd connections that can bypass the VISp. Here, we provide evidence of bidirectional extrastriate connectivity with the mouse LGd. Using small, discrete coinjections of anterograde and retrograde tracers within the thalamus and cortex, our cross-validated approach identified bidirectional thalamocortical connectivity between LGd and extrastriate visual cortices. Our findings support the existence of extrastriate LGd circuits and provide novel understanding of LGd organization in rodent visual system.


2017 ◽  
Vol 34 ◽  
Author(s):  
CHARLES L. COX ◽  
JOSEPH A. BEATTY

AbstractIntrinsic interneurons within the dorsal lateral geniculate nucleus (dLGN) provide a feed-forward inhibitory pathway for afferent visual information originating from the retina. These interneurons are unique because in addition to traditional axodendritic output onto thalamocortical neurons, these interneurons have presynaptic dendrites that form dendrodendritic synapses onto thalamocortical neurons as well. These presynaptic dendrites, termed F2 terminals, are tightly coupled to the retinogeniculate afferents that synapse onto thalamocortical relay neurons. Retinogeniculate stimulation of F2 terminals can occur through the activation of ionotropic and/or metabotropic glutamate receptors. The stimulation of ionotropic glutamate receptors can occur with single stimuli and produces a short-lasting inhibition of the thalamocortical neuron. By contrast, activation of metabotropic glutamate receptors requires tetanic activation and results in longer-lasting inhibition in the thalamocortical neuron. The F2 terminals are predominantly localized to the distal dendrites of interneurons, and the excitation and output of F2 terminals can occur independent of somatic activity within the interneuron thereby allowing these F2 terminals to serve as independent processors, giving rise to focal inhibition. By contrast, strong transient depolarizations at the soma can initiate a backpropagating calcium-mediated potential that invades the dendritic arbor activating F2 terminals and leading to a global form of inhibition. These distinct types of output, focal versus global, could play an important role in the temporal and spatial roles of inhibition that in turn impacts thalamocortical information processing.


1987 ◽  
Vol 35 (2) ◽  
pp. 115 ◽  
Author(s):  
AM Harman ◽  
DP Crewther ◽  
JE Nelson ◽  
SG Crewther

The retinal projections of the northern native cat, Dasyurus hallucatus, were studied by the anterograde transport of tritiated proline and by autoradiography. Seven regions in the brain were found to receive direct retinal projections: (1) the suprachiasmatic nucleus; (2) the dorsal lateral geniculate nucleus; (3) the ventral lateral geniculate nucleus; (4) the lateral posterior nucleus; (5) the nuclei of the accessory optic tract; (6) the pretectal nuclei; (7) the superior colliculus. All nuclei studied received a bilateral retinal projection except the medial terminal nucleus of the accessory optic system, in which only a contralateral input was found. The contralateral eye had a greater input in all cases. As with the related species, Dasyurus viverrinus, there is extensive binocular overlap in the dorsal lateral geniculate nucleus (LGNd). In the LGNd contralateral to the injected eye, the autoradiographs show four contralateral terminal bands occupying most of the nucleus. The axonal terminations in the ipsilateral LGNd are more diffuse but show a faint lamination pattern of four bands. The ventral portion of the LGNd receives only contralateral retinal input, and therefore probably represents the monocular visual field. The other principal termination of the optic nerve, the superior colliculus, has a predominantly contralateral input to both sublayers of the stratum griseum superficiale. However, the ipsilateral fibres terminate only in patches in the more inferior sublayer.


2015 ◽  
Vol 114 (2) ◽  
pp. 1321-1330 ◽  
Author(s):  
Christopher A. Procyk ◽  
Cyril G. Eleftheriou ◽  
Riccardo Storchi ◽  
Annette E. Allen ◽  
Nina Milosavljevic ◽  
...  

In advanced retinal degeneration loss of rods and cones leaves melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) as the only source of visual information. ipRGCs drive non-image-forming responses (e.g., circadian photoentrainment) under such conditions but, despite projecting to the primary visual thalamus [dorsal lateral geniculate nucleus (dLGN)], do not support form vision. We wished to determine what precludes ipRGCs supporting spatial discrimination after photoreceptor loss, using a mouse model ( rd/rd cl) lacking rods and cones. Using multielectrode arrays, we found that both RGCs and neurons in the dLGN of this animal have clearly delineated spatial receptive fields. In the retina, they are typically symmetrical, lack inhibitory surrounds, and have diameters in the range of 10–30° of visual space. Receptive fields in the dLGN were larger (diameters typically 30–70°) but matched the retinotopic map of the mouse dLGN. Injections of a neuroanatomical tracer (cholera toxin β-subunit) into the dLGN confirmed that retinotopic order of ganglion cell projections to the dLGN and thalamic projections to the cortex is at least superficially intact in rd/rd cl mice. However, as previously reported for deafferented ipRGCs, onset and offset of light responses have long latencies in the rd/rd cl retina and dLGN. Accordingly, dLGN neurons failed to track dynamic changes in light intensity in this animal. Our data reveal that ipRGCs can convey spatial information in advanced retinal degeneration and identify their poor temporal fidelity as the major limitation in their ability to provide information about spatial patterns under natural viewing conditions.


Sign in / Sign up

Export Citation Format

Share Document