Revised stratigraphical nomenclature for the Permo-Triassic Flagstone Bench Formation, northern Prince Charles Mountains, East Antarctica

1993 ◽  
Vol 5 (4) ◽  
pp. 409-410 ◽  
Author(s):  
J. A. Webb ◽  
C. R. Fielding

The East Antarctic Craton contains only one substantial outcrop of Palaeozoic–Mesozoic strata between 0° and 150°E; this lies in Mac. Robertson Land, on the eastern margin of the northern Prince Charles Mountains. These rocks are known as the Amery Group (Mond 1972, McKelvey & Stephenson 1990) and comprise dominantly fluviatile sandstones, with subordinate shales, coals and conglomerates. The lower formations of the Amery Group, the Radok Conglomerate and Bainmedart Coal Measures, contain a diverse Stage 5 palynomorph assemblage indicating a Baigendzhinian–Tatarian age (late Early–Late Permian, hereafter abbreviated as mid–Late Permian; Dibner 1978).

2003 ◽  
Vol 43 (1) ◽  
pp. 495 ◽  
Author(s):  
P.A. Arditto

The study area is within PEP 11, which is more than 200 km in length, covers an area over 8,200 km2 and lies immediately offshore of Sydney, Australia’s largest gas and petroleum market on the east coast of New South Wales. Permit water depths range from 40 m to 200 m. While the onshore Sydney Basin has received episodic interest in petroleum exploration drilling, no deep exploration wells have been drilled offshore.A reappraisal of available data indicates the presence of suitable oil- and wet gas-prone source rocks of the Late Permian coal measure succession and gas-prone source rocks of the middle to early Permian marine outer shelf mudstone successions within PEP 11. Reservoir quality is an issue within the onshore Permian succession and, while adequate reservoir quality exists in the lower Triassic succession, this interval is inferred to be absent over much of PEP 11. Quartz-rich arenites of the Late Permian basal Sydney Subgroup are inferred to be present in the western part of PEP 11 and these may form suitable reservoirs. Seismic mapping indicates the presence of suitable structures for hydrocarbon accumulation within the Permian succession of PEP 11, but evidence points to significant structuring post-dating peak hydrocarbon generation. Uplift and erosion of the order of 4 km (based on onshore vitrinite reflectance studies and offshore seismic truncation geometries) is inferred to have taken place over the NE portion of the study area within PEP 11. Published burial history modelling indicates hydrocarbon generation from the Late Permian coal measures commenced by or before the mid-Triassic and terminated during a mid-Cretaceous compressional uplift prior to the opening of the Tasman Sea.Structural plays identified in the western and southwestern portion of PEP 11 are well positioned to contain Late Permian clean, quartz-rich, fluvial to nearshore marine reservoir facies of the coal measures. These were sourced from the western Tasman Fold Belt. The reservoir facies are also well positioned to receive hydrocarbons expelled from adjacent coal and carbonaceous mudstone source rock facies, but must rely on early trap integrity or re-migrated hydrocarbons and, being relatively shallow, have a risk of biodegradation. Structural closures along the main offshore uplift appear to have been stripped of the Late Permian coal measure succession and must rely on mid-Permian to Early Permian petroleum systems for hydrocarbon generation and accumulation.


2002 ◽  
Vol 334 (12) ◽  
pp. 925-931 ◽  
Author(s):  
Emmanuel Skourtsos ◽  
Daniel Vachard ◽  
Alexandra Zambetakis-Lekkas ◽  
Rossana Martini ◽  
Louisette Zaninetti

1996 ◽  
Vol 27 (1-4) ◽  
pp. 237-251 ◽  
Author(s):  
Detlef A. Warnke ◽  
Bonnie Marzo ◽  
David A. Hodell

2009 ◽  
Vol 49 (1) ◽  
pp. 383 ◽  
Author(s):  
Chris Uruski

The offshore Northland Basin is a major sedimentary accumulation lying to the west of the Northland Peninsula of New Zealand. It merges with the Taranaki Basin in the south and its deeper units are separated from Deepwater Taranaki by a buried extension of the West Norfolk Ridge. Sedimentary thicknesses increase to the northwest and the Northland Basin may extend into Reinga. Its total area is at least 65,000 km2 and if the Reinga Basin is included, it may be up to 100,000 km2. As in Taranaki, petroleum systems of the Northland Basin were thought to include Cretaceous to Recent sedimentary rocks. Waka Nui–1 was drilled in 1999 and penetrated no Cretaceous sediments, but instead drilled unmetamorphosed Middle Jurassic coal measures. Economic basement may be older meta-sediments of the Murihiku Supergroup. Thick successions onlap the dipping Jurassic unit and a representative Cretaceous succession is likely to be present in the basin. Potential source rocks known to be present include the Middle Jurassic coal measures of Waka Nui–1 and the Waipawa Formation black shale. Inferred source rocks include Late Jurassic coaly rocks of the Huriwai Beds, the Early Cretaceous Taniwha Formation coaly sediments, possible Late Cretaceous coaly units and lean but thick Late Cretaceous and Paleogene marine shales. Below the voluminous Miocene volcanoes of the Northland arc, the eastern margin of the basin is dominated by a sedimentary wedge that thickens to more than two seconds two-way travel time (TWT), or at least 3,000 m, at its eastern margin and appears to have been thrust to the southwest. This is interpreted to be a Mesozoic equivalent of the Taranaki Fault, a back-thrust to subduction along the Gondwana Margin. The ages of sedimentary units in the wedge are unknown but are thought to include a basal Jurassic succession, which dips generally to the east and is truncated by an erosional unconformity. A southwestwards-prograding succession overlies the unconformity and its top surface forms a paleoslope onlapped by sediments of Late Cretaceous to Neogene ages. The upper succession in the wedge may be of Early Cretaceous age—perhaps the equivalent of the Taniwha Formation or the basal succession in Waimamaku–2. The main part of the basin was rifted to form a series of horst and graben features. The age of initial rifting is poorly constrained, but the structural trend is northwest–southeast or parallel to the Early Cretaceous rifting of Deepwater Taranaki and with the Mesozoic Gondwana margin. Thick successions overlie source units which are likely to be buried deeply enough to expel oil and gas, and more than 70 slicks have been identified on satellite SAR data suggesting an active petroleum system. Numerous structural and stratigraphic traps are present and the potential of the Northland Basin is thought to be high.


1989 ◽  
Vol 29 (1) ◽  
pp. 450 ◽  
Author(s):  
John F. Marshall ◽  
Chao- Shing Lee ◽  
Douglas C. Ramsay ◽  
Aidan M.G. Moore

The major tectonic and stratigraphic elements of the offshore North Perth Basin have been delineated from regional BMR multichannel seismic reflection lines, together with industry seismic and well data. This analysis reveals that three sub- basins, the Edel, Abrolhos and Houtman Sub- basins, have formed as a result of three distinct episodes of rifting within the offshore North Perth Basin during the Early Permian, Late Permian and Late Jurassic respectively. During this period, rifting has propagated from east to west, and has culminated in the separation of this part of the Australian continent from Greater India.The boundaries between the sub- basins and many structures within individual sub- basins are considered to have been produced by strike- slip or oblique- slip motion. The offshore North Perth Basin is believed to be a product of transtension, possibly since the earliest phase of rifting. This has culminated in separation and seafloor spreading by oblique extension along the Wallaby Fracture Zone to form a transform passive continental margin.This style of rifting and extension has produced relatively thin syn- rift sequences, some of which have been either partly or completely removed by erosion. While the source- rock potential of the syn- rift phase is limited, post- rift marine transgressional phases and coal measures do provide adequate and relatively widespread source rocks for hydrocarbon generation. Differences in the timing of rifting across the basin have resulted in a maturation pattern whereby mature sediments become younger to the west.


2011 ◽  
Vol 85 (1) ◽  
pp. 168-183 ◽  
Author(s):  
Hao Wang ◽  
Longyi Shao ◽  
Liming Hao ◽  
Pengfei Zhang ◽  
Ian J. Glasspool ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document