What we know (and what we don't) about the petroleum prospectivity of the Northland Basin, North Island, New Zealand

2009 ◽  
Vol 49 (1) ◽  
pp. 383 ◽  
Author(s):  
Chris Uruski

The offshore Northland Basin is a major sedimentary accumulation lying to the west of the Northland Peninsula of New Zealand. It merges with the Taranaki Basin in the south and its deeper units are separated from Deepwater Taranaki by a buried extension of the West Norfolk Ridge. Sedimentary thicknesses increase to the northwest and the Northland Basin may extend into Reinga. Its total area is at least 65,000 km2 and if the Reinga Basin is included, it may be up to 100,000 km2. As in Taranaki, petroleum systems of the Northland Basin were thought to include Cretaceous to Recent sedimentary rocks. Waka Nui–1 was drilled in 1999 and penetrated no Cretaceous sediments, but instead drilled unmetamorphosed Middle Jurassic coal measures. Economic basement may be older meta-sediments of the Murihiku Supergroup. Thick successions onlap the dipping Jurassic unit and a representative Cretaceous succession is likely to be present in the basin. Potential source rocks known to be present include the Middle Jurassic coal measures of Waka Nui–1 and the Waipawa Formation black shale. Inferred source rocks include Late Jurassic coaly rocks of the Huriwai Beds, the Early Cretaceous Taniwha Formation coaly sediments, possible Late Cretaceous coaly units and lean but thick Late Cretaceous and Paleogene marine shales. Below the voluminous Miocene volcanoes of the Northland arc, the eastern margin of the basin is dominated by a sedimentary wedge that thickens to more than two seconds two-way travel time (TWT), or at least 3,000 m, at its eastern margin and appears to have been thrust to the southwest. This is interpreted to be a Mesozoic equivalent of the Taranaki Fault, a back-thrust to subduction along the Gondwana Margin. The ages of sedimentary units in the wedge are unknown but are thought to include a basal Jurassic succession, which dips generally to the east and is truncated by an erosional unconformity. A southwestwards-prograding succession overlies the unconformity and its top surface forms a paleoslope onlapped by sediments of Late Cretaceous to Neogene ages. The upper succession in the wedge may be of Early Cretaceous age—perhaps the equivalent of the Taniwha Formation or the basal succession in Waimamaku–2. The main part of the basin was rifted to form a series of horst and graben features. The age of initial rifting is poorly constrained, but the structural trend is northwest–southeast or parallel to the Early Cretaceous rifting of Deepwater Taranaki and with the Mesozoic Gondwana margin. Thick successions overlie source units which are likely to be buried deeply enough to expel oil and gas, and more than 70 slicks have been identified on satellite SAR data suggesting an active petroleum system. Numerous structural and stratigraphic traps are present and the potential of the Northland Basin is thought to be high.

1978 ◽  
Vol 18 (1) ◽  
pp. 93 ◽  
Author(s):  
W. F. H. Pilaar ◽  
L. L. Wakefield

The Taranaki Basin contains the only commercial gas and condensate fields in New Zealand. Thirteen offshore wells have been drilled, three of which delineated the Maui Field while six deep tests have been drilled onshore, one of which discovered the Kapuni Field. The geology of the Taranaki Basin is synthesised into a transgressive stratigraphic framework which was modified by two tectonic phases, initial rifting and foundering, followed by wrench faulting. The basin consists of the Western Platform and Taranaki Graben Complex. The former was a relatively stable block throughout most of the Tertiary, only affected during Late Cretaceous to Eocene times by normal block faulting. The latter is bounded to the east by the Taranaki Fault Zone which was mainly active during the Miocene. To the west, the Graben Complex generally shallows across a series of en-echelon steep normal to reverse faults which often show drastic changes in throw over short distances.Upper Cretaceous coal measures were deposited in fault angle depressions. Marine sediments were deposited in western areas by Paleocene times. A regressive phase occurred during Eocene times when coal measures were deposited in southern and eastern areas. Quartzose sandstones of these coal measures are the reservoirs in the Kapuni and Maui Fields. In Late Eocene to Oligocene times, regional submergence recommenced and mainly calcareous sediments were deposited: pelagic -rich sediments in the west, neritic limestones, sandstones and mudstones in the south and east. With the development of the Taranaki Graben Complex from the Miocene onwards, sedimentary sequences consist of graben -fill mudstones and flysch, and prograding wedges comprising the continental shelf.


2015 ◽  
Author(s):  
Benjamin R. Hines* ◽  
Todd Ventura ◽  
Michael F. Gazley ◽  
Kyle J. Bland ◽  
James S. Crampton ◽  
...  

2021 ◽  
Author(s):  
◽  
Glenn Paul Thrasher

<p>Taranaki Basin is a large sedimentary basin located along the western side of New Zealand, which contains all of this countries present petroleum production. The basin first formed as the late-Cretaceous Taranaki Rift, and the first widespread sediments are syn-rift deposits associated with this continental rifting. The Taranaki Rift was an obliquely extensional zone which transferred the movement associated with the opening of the New Caledonia Basin southward to the synchronous Tasman Sea oceanic spreading. Along the rift a series of small, en-echelon basins opened, controlled by high-angle normal and strike-slip faults. These small basins presently underlie the much larger Taranaki Basin. Since the initial rift phase, Taranaki Basin has undergone a complex Cenozoic history of subsidence, compression, additional rifting, and minor strike-slip faulting, all usually involving reactivation of the late-Cretaceous rift-controlling faults. One of the late-Cretaceous rift basins is the Pakawau Basin. Rocks deposited in this basin outcrop in Northwest Nelson as the Pakawau Group. Data from the outcrop and from wells drilled in the basin allow the Pakawau Group to be divided into two formations, the Rakopi Formation and the North Cape Formation, each with recognizable members. The Rakopi Formation (new name) is a sequence of terrestrial strata deposited by fans and meandering streams in an enclosed basin. The North Cape Formation is a transgressive sequence of marine, paralic and coastal-plain strata deposited in response to regional flooding of the rift. The coal-measure strata of the Rakopi Formation are organic rich, and are potential petroleum source rocks where buried deeply enough. In contrast, the marine portions of the North Cape Formation contain almost no organic matter and cannot be considered a potential source rock. Sandy facies within both formations have petroleum reservoir potential. The Rakopi and North Cape formations can be correlated with strata intersected by petroleum exploration wells throughout Taranaki Basin, and all syn-rift sediments can be assigned to them. The Taranaki Rift was initiated about 80 Ma, as recorded by the oldest sediments in the Rakopi Formation. The transgression recorded in the North Cape Formation propagated southwards from about 72 to 70 Ma, and the Taranaki Rift remained a large marine embayment until the end of the Cretaceous about 66.5 Ma. Shortly thereafter, a Paleocene regression caused the southern portions of Taranaki Basin to revert to terrestrial (Kapuni Group) sedimentation. The two distinct late Cretaceous sedimentary sequences of the Rakopi and North Cape formations can be identified on seismic reflection data, and the basal trangressive surface that separates them has been mapped throughout the basin. This horizon essentially marks the end of sedimentation in confined, terrestrial subbasins, and the beginning of Taranaki Basin as a single, continental-margin-related basin. Isopach maps show the Rakopi Formation to be up to 3000m thick and confined to fault- controlled basins. The North Cape Formation is up to 1500m thick and was deposited in a large north-south embayment, open to the New Caledonia basin to the northwest. This embayment was predominantly a shallow-marine feature, with shoreline and lower coastal plain facies deposited around its perimeter</p>


2020 ◽  
Author(s):  
Remi J.G. Charton

Our understanding of the Earth’s interior is limited by the access we have of its deep layers, while the knowledge we have of Earth’s evolution is restricted to harvested information from the present state of our planet. We therefore use proxies, physical and numerical models, and observations made on and from the surface of the Earth. The landscape results from a combination of processes operating at the surface and in the subsurface. Thus, if one knows how to read the landscape, one may unfold its geological evolution.In the past decade, numerous studies have documented km-scale upward and downward vertical movements in the continental rifted margins of the Atlantic Ocean and in their hinterlands. These movements, described as exhumation (upward) and subsidence (downward), have been labelled as “unpredicted” and/or “unexpected”. ‘Unpredicted’ because conceptual, physical, and numerical models that we dispose of for the evolution of continental margins do not generally account for these relatively recent observations. ‘Unexpected’ because the km-scale vertical movements occurred when our record of the geological history is insufficient to support them. As yet, the mechanisms responsible for the km-scale vertical movements remain enigmatic.One of the common techniques used by geoscientists to investigate the past kinematics of the continental crust is to couple ‘low-temperature thermochronology’ and ‘time-temperature modelling’. In Morocco alone, over twenty studies were conducted following this approach. The reason behind this abundance of studies and the related enthusiasm of researchers towards Moroccan geology is due to its puzzling landscapes and complex history. In this Thesis, we investigate unconstrained aspects of the km-scale vertical movements that occurred in Morocco and its surroundings (Canary Islands, Algeria, Mali, and Mauritania). The transition area between generally subsiding domains and mostly exhuming domains, yet poorly understood, is discussed via the evolution of a profile, running across the rifted continental margin (chapter 2). Low-temperature thermochronology data from the central Morocco coastal area document a km-scale exhumation between the Permian and the Early/Middle Jurassic. The related erosion fed sediments to the subsiding Mesozoic basin to the northwest. Basement rocks along the transect were subsequently buried between the Late Jurassic and the Early Cretaceous. From late Early/Late Cretaceous onwards, rocks present along the transect were exhumed to their present-day position.The post-Variscan thermal and geological history of the Anti-Atlas belt in central Morocco is constrained with a transect constructed along strike of the belt (chapter 3). The initial episode occurred in the Late Triassic and led to a km-scale exhumation of crustal rocks by the end of the Middle Jurassic. The following phase was characterised by basement subsidence and occurred during the Late Jurassic and most of the Early Cretaceous. The basement rocks were then slowly brought to the surface after experiencing a km-scale exhumation throughout the Late Cretaceous and the Cenozoic. The exhumation episodes extended into the interior of the African tectonic plate, perhaps beyond the sampled belt itself. Exhumation rates and fluxes of material eroded from the hinterlands of the Moroccan rifted margin were quantified from the Permian (chapter 4). The high denudation rates, obtained in central Morocco during the Early to Middle Jurassic and in northern Morocco during the Neogene, are comparable to values typical of rift flank, domal, or structural uplifts. These are obtained in central Morocco during the Early to Middle Jurassic and in northern Morocco during the Neogene. Exhumation rates for other periods in northern to southern Morocco average around ‘normal’ denudation values. Periods of high production of sediments in the investigated source areas are the Permian, the Jurassic, the Early Cretaceous, and the NeogeneThe Phanerozoic evolution of source-to-sink systems in Morocco and surroundings is illustrated in several maps (chapter 5). Substantial shifts in the source areas were evidenced between the central and northern Moroccan domains during the Middle-Late Jurassic and between the Meseta and the Anti-Atlas during the Early-Late Cretaceous. Finally, the mechanisms responsible for the onset and subsistence of the unpredicted km-scale vertical movements are discussed (chapter 6). We propose that a combination of the large-scale crustal folding, mantle-driven dynamic topography, and thermal subsidence, superimposed to changes in climates, sea level and erodibility of the exposed rocks, were crucial to the timing, amplitude, and style of the observed vertical movements.The km-scale vertical movements will continue to be studied for years to come. Expectantly, this Thesis will deliver sufficiently robust grounds for further elaborated and integrated studies in Morocco and beyond.


AAPG Bulletin ◽  
2003 ◽  
Vol 87 (2) ◽  
pp. 335-355 ◽  
Author(s):  
Longyi Shao ◽  
Pengfei Zhang ◽  
Jason Hilton ◽  
Rod Gayer ◽  
Yanbin Wang ◽  
...  

1989 ◽  
Vol 29 (1) ◽  
pp. 450 ◽  
Author(s):  
John F. Marshall ◽  
Chao- Shing Lee ◽  
Douglas C. Ramsay ◽  
Aidan M.G. Moore

The major tectonic and stratigraphic elements of the offshore North Perth Basin have been delineated from regional BMR multichannel seismic reflection lines, together with industry seismic and well data. This analysis reveals that three sub- basins, the Edel, Abrolhos and Houtman Sub- basins, have formed as a result of three distinct episodes of rifting within the offshore North Perth Basin during the Early Permian, Late Permian and Late Jurassic respectively. During this period, rifting has propagated from east to west, and has culminated in the separation of this part of the Australian continent from Greater India.The boundaries between the sub- basins and many structures within individual sub- basins are considered to have been produced by strike- slip or oblique- slip motion. The offshore North Perth Basin is believed to be a product of transtension, possibly since the earliest phase of rifting. This has culminated in separation and seafloor spreading by oblique extension along the Wallaby Fracture Zone to form a transform passive continental margin.This style of rifting and extension has produced relatively thin syn- rift sequences, some of which have been either partly or completely removed by erosion. While the source- rock potential of the syn- rift phase is limited, post- rift marine transgressional phases and coal measures do provide adequate and relatively widespread source rocks for hydrocarbon generation. Differences in the timing of rifting across the basin have resulted in a maturation pattern whereby mature sediments become younger to the west.


1985 ◽  
Vol 4 (1) ◽  
pp. 1-10 ◽  
Author(s):  
A. El-Arnauti ◽  
M. Shelmani

Abstract. INTRODUCTIONThe material which forms the basis of this project was obtained from a number of wells in the study area in Cyrenaica, the northeastern part of Libya. The study area, which is located between latitudes 25° and 33°N and between longitudes 20° and 25° E, covers some 365,750 square kilometres (see Fig. 1). The area extends from the Egyptian border in the east to the eastern flank of the Sirte Basin in the west and is part of the stable Saharan Shield.Since Precambrian time several phases of epeirogenic movements have produced troughs, horst blocks or platforms which have in turn influenced the subsequent sedimentological history of the area. In the southern and southeastern part of the study area, the basement is unconformably overlain by a thick, partially marine Palaeozoic sequence which is in turn unconformably overlain by sediments of Jurassic or younger age. The basement in the central and southwestern parts of the area is unconformably overlain by non-marine clastics of Late Jurassic and Early Cretaceous age or by marine sediments of Late Cretaceous and Tertiary age. In the eastern and northeastern section the basement is overlain by a wedge of eastward thickening marine Palaeozoic rocks which are in turn unconformably overlain by marine sediments of Late Cretaceous and Tertiary age. In the most northerly part of the northeastern region of the study area, a thick paralic sequence of Triassic, Jurassic and Early Cretaceous deposits is unconformably overlain by Late Cretaceous and Tertiary sediments.PALAEOZOICRocks of Cambro-Ordovician . . .


2021 ◽  
Author(s):  
◽  
Lisa Ann Foley

<p>Basement rocks within the southeastern Tararua Range belong to two associations: a sedimentary association (greywacke, argillite, calcareous siltstone, conglomerate and olistostrome) and a volcanogenic association (metabasite, chert, red argillite and limestone). Rocks of the sedimentary association are more abundant and have been deposited by turbidity currents and debris flows in a deep water, marine environment. Three turbidite and two intercalated non-turbidite lithofacies are recognized. Sedimentological data suggest that the sediment was deposited in a submarine fan system (mid-fan environment), probably in a trench. The alternating greywacke-argillite beds have detrital compositions which are essentially quartzo-feldspathic. Framework mode and geochemical analyses indicate that the sediment was derived from an active continental margin that was shedding detritus of mainly acid-volcanic and metamorphic origin. Rocks of the volcanogenic association, although volumetrically minor, are widely distributed. Geochemical analyses of metabasites suggest that they were erupted in an oceanic environment, both at a mid-ocean ridge and an intra-plate setting. The presence of radiolaria skeletons in red argillite and chert indicates a hemiplagic depositional environment for these rocks. Rocks of the volcanogenic association often have conformable contacts. These rocks have a related depositional environment and represent seafloor material. Where observed, contacts between rocks of the two associations are always faulted. Deformation in the field area is characterized by development of the following types of structures: several generations of folds, faults at both a low angle and high angle to bedding, shear foliation and melange. The region has undergone the following deformational events, outlined from oldest to youngest: 1) folding with at least two fold generations present. 2) fragmentation and disruption of the beds by faults. Low-angle to bedding faults and high-angle to bedding faults have disrupted the bedding. Where these structures have occurred to a great extent, a chaotically disrupted unit, melange, has formed. 3) post-melange folding. 4) recent faulting related to the present strike-slip regime in New Zealand. Rocks have undergone prehnite-pumpellyite facies metamorphism. The rock types, their field relationships and the deformation that the area has undergone is consistent with accretion at a convergent plate margin. Radiolaria were extracted from two red chert samples. In the study the radiolaria define a Middle Jurassic age, which indicates that the sediments in the southeastern Tararua Range must be of Middle Jurassic in age or younger (possibly Cretaceous). A similar sample from the Manawatu Gorge to the north of the study area contained radiolaria of Late Jurassic-Early Cretaceous age. Sediments in both areas therefore belong to fossil zone 5 (Late Jurassic-Early Cretaceous) of MacKinnon (1983).</p>


2021 ◽  
Author(s):  
◽  
Rachel Barrett

<p>Geophysical data show that the West Wishbone Ridge, offshore of eastern New Zealand, is best described as having previously been a crustal transform fault, which first propagated along the eastern margin of the Hikurangi Plateau as subduction along the New Zealand sector of the Gondwana margin began to slow and reorientate between 105 and 101 Ma. Variation in the strike of the West Wishbone Ridge has resulted in contrasting compressional and extensional zones along the ridge. These regimes reflect the direction of strike offset from the direction of fault propagation, and constrain the sense of motion along the West Wishbone Ridge as having been dextral.  We find evidence that Cretaceous subduction along the Chatham Rise margin extended east of the margin offset at 174°W that marks the edge of Hikurangi Plateau subduction beneath the margin. Rotation of the Chatham Rise margin between 105 and 101 Ma was accommodated by westward broadening of the extensional zone of deformation associated with the West Wishbone Ridge near its intersection with the Chatham Rise. The amount of offset along the ridge indicates that significant transform motion along the West Wishbone Ridge south of ~40.5°S ceased ca. 101 Ma, coeval with the cessation of spreading of the Osbourn Trough, and of subduction of the Hikurangi Plateau.  Additionally, we find anomalously thick oceanic crust adjacent to the WWR and north of the Hikurangi Plateau (>12 km thick). This is attributed to the proximity of this crust to the Hikurangi Plateau Large Igneous Province.  The results of this study are based on seismic reflection and magnetic data recently collected during the 2016 R/V Sonne survey SO-246, as well as previously collected seismic reflection profiles and satellite gravity data.</p>


Sign in / Sign up

Export Citation Format

Share Document