scholarly journals Global solutions of Maxwell's equations in an electromagnetic field with a temperature-dependent electrical conductivity

1994 ◽  
Vol 5 (1) ◽  
pp. 57-64 ◽  
Author(s):  
Hong-Ming Yin

This paper deals with Maxwell's equations in a quasi-stationary electromagnetic field subject to the effects of temperature. This model is encountered in the penetration of a magnetic field in substances where the electrical conductivity depends on the temperature. Similar phenomena also occur in some industrial problems such as the thermistor. Taking the effect of Joule heating into the consideration, we obtain a strongly coupled nonlinear system. Global solvability is established for this system.

1. Formulation of the problem. - The propagation of electromagnetic waves in a homogeneous isotropic medium showing metallic conductivity has been treated phenomenologically on the basis of classical electrodynamics. If in Maxwell's equations for the electromagnetic field curl E = - 1/ c ∂B/∂ t , curl H = 1/ c (∂D/∂ t + 4πI), div D = 4πρ, div B = 0, we assume that D = εE, B = μH, I = σE, (1) where e is the dielectric constant, u the permeability and q the electrical conductivity, we get curl E = - μ/c ∂H/∂ t , curl H = 1/ c (ε ∂E/∂ t 4πσE), div E = 4πρ/ε. div H =0.


2019 ◽  
Vol 379 ◽  
pp. 118-131 ◽  
Author(s):  
Tsung-Ming Huang ◽  
Tiexiang Li ◽  
Ruey-Lin Chern ◽  
Wen-Wei Lin

2018 ◽  
Vol 7 (2) ◽  
pp. 10-12
Author(s):  
C. J. Papachristou

The charging capacitor is the standard textbook and classroom example for explaining the concept of the so-called Maxwell displacement current. A certain aspect of the problem, however, is often overlooked. It concerns the conditions for satisfaction of the Faraday-Henry law inside the capacitor. Expressions for the electromagnetic field are derived that properly satisfy all four of Maxwell’s equations in that region.


1932 ◽  
Vol 51 ◽  
pp. 71-79 ◽  
Author(s):  
D. Meksyn

In two recent papers Professor E. T. Whittaker has solved the electromagnetic equations for the case of a uniform gravitational field. The fundamental tensor associated with such a field makes the Riemannian tensor vanish, since such a field can be transformed away by a suitable choice of coordinates. This property enables us to find the electromagnetic field in a uniform gravitational field without solving Maxwell's equations, but by a mere transformation of co-ordinates.


Sign in / Sign up

Export Citation Format

Share Document