Reduction of systems of nonlinear partial differential equations to simplified involutive forms

1996 ◽  
Vol 7 (6) ◽  
pp. 635-666 ◽  
Author(s):  
Gregory J. Reid ◽  
Allan D. Wittkopf ◽  
Alan Boulton

We describe an algorithm which uses a finite number of differentiations and algebraic operations to simplify a given analytic nonlinear system of partial differential equations to a form which includes all its integrability conditions. This form can be used to test whether a given differential expression vanishes as a consequence of such a system and may be more amenable to numerical or analytical solution techniques than the original system. It is also useful for determining consistent initial conditions for such a system. A computer implementable version of our algorithm is given for polynomially nonlinear systems of partial differential equations. This version uses Grobner basis techniques for constructing the radical of the polynomial ideal generated by the equations of such systems.

Author(s):  
Antranik A. Siranosian ◽  
Miroslav Krstic ◽  
Andrey Smyshlyaev ◽  
Matt Bement

We present a control design method for nonlinear partial differential equations (PDEs) based on a combination of gain scheduling and backstepping theory for linear PDEs. A benchmark first-order hyperbolic system with a destabilizing in-domain nonlinearity is considered first. For this system a nonlinear feedback law based on gain scheduling is derived explicitly, and a statement of stability is presented for the closed-loop system. Control designs are then presented for a string and shear beam PDE, both with Kelvin-Voigt damping and potentially destabilizing free-end nonlinearities. String and beam simulation results illustrate the merits of the gain scheduling approach over the linearization-based design.


2021 ◽  
Vol 5 (3) ◽  
pp. 106
Author(s):  
Muhammad Bhatti ◽  
Md. Rahman ◽  
Nicholas Dimakis

A multivariable technique has been incorporated for guesstimating solutions of Nonlinear Partial Differential Equations (NPDE) using bases set of B-Polynomials (B-polys). To approximate the anticipated solution of the NPD equation, a linear product of variable coefficients ai(t) and B-polys Bi(x) has been employed. Additionally, the variable quantities in the anticipated solution are determined using the Galerkin method for minimizing errors. Before the minimization process is to take place, the NPDE is converted into an operational matrix equation which, when inverted, yields values of the undefined coefficients in the expected solution. The nonlinear terms of the NPDE are combined in the operational matrix equation using the initial guess and iterated until converged values of coefficients are obtained. A valid converged solution of NPDE is established when an appropriate degree of B-poly basis is employed, and the initial conditions are imposed on the operational matrix before the inverse is invoked. However, the accuracy of the solution depends on the number of B-polys of a certain degree expressed in multidimensional variables. Four examples of NPDE have been worked out to show the efficacy and accuracy of the two-dimensional B-poly technique. The estimated solutions of the examples are compared with the known exact solutions and an excellent agreement is found between them. In calculating the solutions of the NPD equations, the currently employed technique provides a higher-order precision compared to the finite difference method. The present technique could be readily extended to solving complex partial differential equations in multivariable problems.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Eman M. A. Hilal ◽  
Tarig M. Elzaki

The aim of this study is to give a good strategy for solving some linear and nonlinear partial differential equations in engineering and physics fields, by combining Laplace transform and the modified variational iteration method. This method is based on the variational iteration method, Laplace transforms, and convolution integral, introducing an alternative Laplace correction functional and expressing the integral as a convolution. Some examples in physical engineering are provided to illustrate the simplicity and reliability of this method. The solutions of these examples are contingent only on the initial conditions.


Author(s):  
Antranik A. Siranosian ◽  
Miroslav Krstic ◽  
Andrey Smyshlyaev ◽  
Matt Bement

We present a control design method for nonlinear partial differential equations (PDEs) based on a combination of gain scheduling and backstepping theory for linear PDEs. A benchmark first-order hyperbolic system with an in-domain nonlinearity is considered first. For this system a nonlinear feedback law, based on gain scheduling, is derived explicitly, and a proof of local exponential stability, with an estimate of the region of attraction, is presented for the closed-loop system. Control designs (without proofs) are then presented for a string PDE and a shear beam PDE, both with Kelvin–Voigt (KV) damping and free-end nonlinearities of a potentially destabilizing kind. String and beam simulation results illustrate the merits of the gain scheduling approach over the linearization based design.


2005 ◽  
Vol 73 (2) ◽  
pp. 197-205 ◽  
Author(s):  
M. R. Belmont

The work presented introduces correlation moment analysis. This technique can be employed to explore the growth of determinism from stochastic initial conditions in physical systems described by non-linear partial differential equations (PDEs) and is also applicable to wholly deterministic situations. Correlation moment analysis allows the analytic determination of the time dependence of the spatial moments of the solutions of certain types of non-linear partial differential equations. These moments provide measures of the growth of processes defined by the PDE, furthermore the results are obtained without requiring explicit solution of the PDE. The development is presented via case studies of the linear diffusion equation and the non-linear Kortweg de-Vries equation which indicate strategies for exploiting the various properties of correlation moments developed in the text. In addition, a variety of results have been developed which show how various classes of terms in PDEs affect the structure of a sequence of correlation moment equations. This allows results to be obtained about the behavior of the PDE solution, in particular how the presence of certain types of terms affects integral measures of the solution. It is also demonstrated that correlation moments provide a very simple, natural approach to determining certain subsets of conserved quantities associated with the PDEs.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Stegliński

Abstract The aim of this paper is to extend results from [A. Cañada, J. A. Montero and S. Villegas, Lyapunov inequalities for partial differential equations, J. Funct. Anal. 237 (2006), 1, 176–193] about Lyapunov-type inequalities for linear partial differential equations to nonlinear partial differential equations with 𝑝-Laplacian with zero Neumann or Dirichlet boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document