Nest site selection and its implications for conservation of the endangered Oriental Stork Ciconia boyciana in Yellow River Delta, China

2019 ◽  
Vol 30 (2) ◽  
pp. 323-334 ◽  
Author(s):  
LEI CHENG ◽  
LIZHI ZHOU ◽  
LIXIN WU ◽  
GUANGHAI FENG

SummaryAvian nest site selection is crucial to breeding birds especially for large endangered waterbirds. We investigated the population dynamics, nests and breeding habitat selection, offspring numbers and reproductive success rate of Oriental Stork Ciconia boyciana from February to June 2017 in Yellow River Delta National Nature Reserve (YRD NNR), Shandong, China. We measured the characteristic variables of 32 control plots by random selection and 62 nest plots, including 40 nests on power poles, 14 nests on artificial poles and eight nests on pylon poles. We used conditional logistic regression and model-averaging to quantify data and model characteristic variables affecting nest site selection. Our results showed that human disturbance was the main negative factor affecting Oriental Stork’s selection of power pole nests. Meanwhile, distance from highways was the most important variable for the selection of artificial nests. Distance from sightseeing sites was the main explanatory variable that contributed to the selection of pylon nests. Based on our findings, we recommend promoting conservation of this species by reducing human disturbance, such as forbidding use of car horns in nest site areas and providing enough suitable nest sites.

2005 ◽  
Vol 83 (9) ◽  
pp. 1240-1245 ◽  
Author(s):  
Iain J Stenhouse ◽  
H Grant Gilchrist ◽  
William A Montevecchi

The selection of breeding habitat is of prime importance for individual fitness. Among birds, natural selection should favour the ability to recognize and select habitat suitable for nesting and rearing chicks. This study compares the characteristics of Sabine's Gull, Xema sabini (Sabine, 1819), nest sites with random points across a coastal tundra environment on Southampton Island, Nunavut, Canada. The availability of terrestrial invertebrate prey was also examined among habitats. Sabine's Gull nests were nonrandomly distributed in relation to vegetation, substrate, and proximity to water. Gulls nested within approximately 1 km of the coastline and selected sites with the greatest proportions of moss and standing water (i.e., they nested close to the edge of small freshwater ponds near shore). However, there were no detectable differences in characteristics between successful and unsuccessful nests within preferred habitat. The dynamics of terrestrial invertebrate prey communities varied between years, but the volume of invertebrates in Sabine's Gull nesting habitat was intermediate between the most productive habitats and the least productive habitats in both years. However, nest-site selection in Sabine's Gulls may also be influenced by the availability of aquatic invertebrates (not examined in this study) and their proximity to the marine coastline, where chicks are taken to be reared.


Ibis ◽  
2018 ◽  
Vol 162 (1) ◽  
pp. 153-161 ◽  
Author(s):  
Tulsi Ram Subedi ◽  
José D. Anadón ◽  
Hem Sagar Baral ◽  
Munir Z. Virani ◽  
Shahrul Anuar Mohd Sah

2020 ◽  
Vol 13 (3) ◽  
pp. 63-69
Author(s):  
Bo Zhou ◽  
Changzhang Feng ◽  
Wei Liang

The quality of breeding habitat may directly affect the survival and development of progeny. Therefore, the selection of a suitable nest-site is an important factor affecting the reproductive success of birds. The most important reason for a bird’s reproductive failure is nest predation. Predation may cause birds to change their nest-sites and even nest morphology. Here we investigated the nest-site characteristics by long-tailed broadbills ( Psarisomus dalhousiae) in Nonggang, Guangxi, southwestern China. Our results showed that long-tailed broadbills in Nonggang mainly build their nests on power lines (88.5%) and nest-site selection was mainly affected by predation pressure and food resources. At the same time, nest-site concealment was trade-off against predator avoidance. This anti-predator strategy effectively utilizes human infrastructure.


2007 ◽  
Vol 13 (sp1) ◽  
pp. 68-72 ◽  
Author(s):  
Yue-Hua Sun ◽  
Yun Fang ◽  
Chen-Xi Jia ◽  
Siegfried Klaus ◽  
Jon E. Swenson ◽  
...  

1992 ◽  
Vol 31 (1) ◽  
pp. 45-46 ◽  
Author(s):  
Abm Enayet Hossain ◽  
M Sharif ◽  
A H Baqui

2019 ◽  
Vol 41 (2) ◽  
pp. 147 ◽  
Author(s):  
Mariana Tadey

Introduced livestock may indirectly affect bird species by decreasing vegetation structure and affecting the selection of nesting sites. This is especially true for birds that use shrubs as the raw material for nest construction or for nest placement. Nesting in inadequate supporting structures or the use of inadequate raw material for nest building may increase nest vulnerability (e.g. increasing structure weakness, falling and nest exposure to predation). Accordingly, bird species show a great variation in the selectivity of nesting sites and the raw material they use. Furnariidae family members exhibit an extraordinary diversity in nest placement and structure, which allows them to survive in different arid environments. I report here on a study of nest site selection of two common furnariid species, Leptasthenura aegithaloides and Pseudoseisura gutturalis, across a grazing gradient composed by nine independent paddocks within the same arid habitat. These species use large closed-nests (>40 cm long) built with thorny branches, placed on spiny shrubs. I measured nest abundance and supporting plants characteristics, vegetation structure, browsing intensity and compared the plants selected by the birds with the surrounding vegetation. These bird species used only few plant species for nest building and location. Livestock significantly reduced vegetation cover of the species used to build and place the nests, affecting nest site selection and reducing nest abundance. As livestock density increased, both species selected aggregated plants and the tallest plants for nesting, which may increase nest exposure. Therefore, livestock may indirectly affect nest-site selection of birds ultimately affecting their nesting ecology. This work illustrates how domestic livestock, through decreasing plant cover, may affect native biota with consequences on key species within an ecosystem.


Sign in / Sign up

Export Citation Format

Share Document