nest sites
Recently Published Documents


TOTAL DOCUMENTS

643
(FIVE YEARS 82)

H-INDEX

39
(FIVE YEARS 4)

Author(s):  
S.J. Kell ◽  
N. Rollinson ◽  
R.J. Brooks ◽  
Jacqueline Litzgus

Many oviparous reptiles nest in aggregations and with temporal synchrony. We hypothesized that these traits reflect attraction by conspecifics rather than limiting suitable habitat. We quantified whether Painted Turtles (Chrysemys picta (Schneider, 1783)) in Algonquin Park, Ontario, were nesting communally, identified cues females used to select nest sites, and tested whether hatching success was higher in spatially-clustered nests. We found that nests were closer to one another than expected by chance (i.e., were clustered), but that individual nest site selection was only weakly influenced by micro-habitat characteristics. Survival of clustered nests (49%) was not significantly higher than that of solitary nests (39%). When turtle models were placed on the nesting embankment, females nested most often with the highest density of models. Given that reproductive lifespan is the major axis of fitness and that there was little benefit to nest survival in clustered nests, we suggest that clustering is related to females cueing to conspecific nests to expedite the nesting process and gain a good-quality nest site (chosen by the first nesting female in the cluster) while investing little energy in nest-site selection. This strategy may reduce time spent on land, thereby minimizing chances of dehydration, temperature stress, and adult depredation.


2021 ◽  
Vol 13 (14) ◽  
pp. 20209-20217
Author(s):  
Foram P. Patel ◽  
Pravinsang P. Dodia

The House Sparrow Passer domesticus is widely distributed across the world, and local alarming declines in sparrow populations have prompted studies focused on this species. An understanding of fundamental life history aspects such as roosting patterns is necessary for the development of efficient conservation strategies. This study examined House Sparrow roosting patterns in urban, suburban and rural areas of Bhavnagar during 2017–2018. Potential roosting sites were identified, and peak arrival/ departure times and roosting duration of sparrows were recorded. We found that peak arrival and departure times were correlated with solar timings, indicating a strong influence of photoperiod on sparrow behaviour. Little variation was observed in sparrow arrival and departure times across the urban, suburban and rural gradient. However, arrival duration was significantly larger in urban and suburban areas. This may be due to the restricted availability of suitable patches within these habitats, requiring birds to spend more time foraging. House Sparrows mostly preferred thick vegetation for pre-roosting activities and roosting, and the loss of thick vegetation poses a threat to sparrow populations worldwide. In addition to increasing nesting opportunities by providing artificial nest sites, the importance of retaining appropriate habitats should be a major focus of conservation strategies.


2021 ◽  
Vol 9 ◽  
Author(s):  
Craig D. Morris

Regenerative grazing management (ReGM) seeks to mimic natural grazing dynamics to restore degraded soils and the ecological processes underpinning sustainable livestock production while enhancing biodiversity. Regenerative grazing, including holistic planned grazing and related methods, is an adaptive, rotational stocking approach in which dense livestock herds are rotated rapidly through multiple paddocks in short bouts of grazing to defoliate plants evenly and infrequently, interspersed with long recovery periods to boost regrowth. The concentrated “hoof action” of herds in ReGM is regarded vital for regenerating soils and ecosystem services. Evidence (from 58 studies) that ReGM benefits biodiversity is reviewed. Soils enriched by ReGM have increased microbial bioactivity, higher fungal:bacteria biomass, greater functional diversity, and richer microarthropods and macrofauna communities. Vegetation responds inconsistently, with increased, neutral, or decreased total plant diversity, richness of forage grasses and invasive species under ReGM: grasses tend to be favored but shrubs and forbs can be depleted by the mechanical action of hooves. Trampling also reduces numerous arthropods by altering vegetation structure, but creates favorable habitat and food for a few taxa, such as dung beetles. Similarly, grazing-induced structural changes benefit some birds (for foraging, nest sites) while heavy stocking during winter and droughts reduces food for seedeaters and songbirds. With herding and no fences, wildlife (herbivores and predators) thrives on nutritious regrowth while having access to large undisturbed areas. It is concluded that ReGM does not universally promote biodiversity but can be adapted to provide greater landscape habitat heterogeneity suitable to a wider range of biota.


2021 ◽  
pp. 261-272
Author(s):  
K. Hachour ◽  
N. Talmat–Chaouchi ◽  
R. Moula

In 2018 and 2019 thirteen species of raptors, with 407 individuals, were found nesting in Great Kabylia in Algeria. During this period, 196 raptor nest sites were located (Falco tinnunculus is not included as it thrives in many biotopes and tolerates anthropization). We noted a decrease in specific richness and abundance of raptors in the region compared to data for 1992. Some raptors were not seen during our study: Gypaetus barbatus, Pandion haliaetus, Falco biarmicus, Circaetus aeruginosus, and Falco eleonorae. We classified nesting diurnal raptors into 3 classes according to their relative abundance: (1) widespread species (10-26 %): F. tinnunculus, Hieraaetus pennatus, and Buteo rufinus cirtensis; (2) common species (5-10 %): Elanus caeruleus, Falco peregrinus, Circaetus gallicus, Falco naumanni, Gyps fulvus, and Milvus migrans; and (3) uncommon species (1-5 %): Neophron percnopterus, Accipiter nisus, Aquila fasciata, and Aquila chrysaeto. With the exception of N. percnopterus, which is classified as an endangered species, the raptors of Great Kabylia are mainly classified in the category of species of least concern (IUCN, 2020). Dataset published through GBIF (Doi: 10.15470/wt5dgi).


Author(s):  
Jay McEntee ◽  
Zoe Zelazny ◽  
Gordon Burleigh

Alfred Russel Wallace hypothesized that the use of cavity or dome nests releases incubating birds from predation risk, and that this allows the evolution of conspicuous coloration in females. By this hypothesis, females that use open nests are subject to strong selection for crypsis. Here, we test the validity of Wallace’s proposed evolutionary correlation between nest type and conspicuous coloration in females across the largest avian radiation, the Passeriformes, using phylogenetic comparative methods. We also test an alternate hypothesis that cavity-nesting results in greater conspicuousness because competition for cavities is stronger than for other nest sites, and such competition can drive social selection on female plumage. By this hypothesis, dome-nesting females should generally be less conspicuous than cavity-nesting species. We found no support for Wallace’s hypothesis that concealed nests yield conspicuous plumage while open nests yield dull plumage, and some support for the social selection hypothesis in smaller-bodied, gregarious species. While our analyses do not support the core part of Wallace’s hypothesis, they corroborate his contention that evolutionary transitions in nest type are rare, indicating that nest types may influence macroevolutionary selective regimes for other traits.


2021 ◽  
Author(s):  
◽  
Graeme Peter Elliott

<p>This study aimed to find an explanation for the decline of yellowheads and formulate recommendations for management and further research on the species. There were three main lines of investigation: basic population ecology and behaviour; the effect of introduced predators on breeding; and the habitat relationships of the species. A detailed study of a yellowhead population in the Eglinton Valley in Fiordland National Park was undertaken. Birds were caught and banded and their behaviour, breeding and survival monitored for 4 years. The relationship between yellowhead distribution and vegetation, topography, and fertility were investigated in part of Mt Aspiring National Park during one summer.  Yellowheads suffered high rates of predation from stoats during "plagues" that occurred after heavy beech seeding. Three aspects of yellowhead biology made them vulnerable to mammalian predation: (1) they nested in holes and predators killed not only eggs and nestlings, but also incubating adults; (2) only the females incubated, thus losses to predators had a greater effect on the population than if equal numbers of males and females were killed; and (3) yellowheads nested later than most other forest passerines and were still nesting when stoat numbers reached their summer peak. Though the yellowhead's hole nesting habit made them vulnerable to mammals it restricted nest parasitism and predation by long-tailed cuckoos and hole nesting is likely to have evolved in response to cuckoos. Yellowheads were found to be tall forest specialists; they occurred more frequently in tall forests than short ones, and preferentially used the largest trees. Their choice of nest sites had no effect on their preference for any forest types. The forests they favoured grew mainly on fertile valley floors at low altitudes. Yellowhead populations in "good habitats" raised two broods a year and these populations are probably sufficiently productive to withstand stoat plagues occurring once every 5 years, the average frequency of this event. Populations in "poor habitats" raise only one brood and their productivity is probably insufficient to match losses to stoats. Such populations are probably slowly declining, and are very vulnerable to extinction. A habitat suitability index was devised and forests in the north of the South Island from which yellowheads have disappeared, were compared with those in the south where yellowheads persist. Northern forests were as good for yellowheads as southern ones. Thus, the combination of habitat preference and predation cannot account for the recent disappearance of yellowheads from the northern half of the South Island. The decline in yellowheads was attributed to both predation by introduced mammals and competition with introduced vespulid wasps. Predation may have eliminated yellowheads from podocarp-dominated forests where predator numbers are constantly high, but they survive in some beech forests where predator numbers rise only once every five years. However, even within beech forests only the most productive populations are sufficiently productive to survive predation and these populations are probably susceptible to competition with wasps which eat large numbers of invertebrates. Yellowheads are likely to be more vulnerable to wasp competition than other forest insectivores because: (1) predation has reduced their productivity more than other birds because they nest in holes; (2) they are specialised in low altitude, tall forest that the wasps also favour; (3) their breeding is later than most other forest birds and their period of juvenile dependence much longer. Yellowheads are still feeding fledgling yellowheads at the time when wasps numbers reach their peak in the autumn, whereas the offspring of other forest birds are independent by this stage.</p>


2021 ◽  
Author(s):  
◽  
Graeme Peter Elliott

<p>This study aimed to find an explanation for the decline of yellowheads and formulate recommendations for management and further research on the species. There were three main lines of investigation: basic population ecology and behaviour; the effect of introduced predators on breeding; and the habitat relationships of the species. A detailed study of a yellowhead population in the Eglinton Valley in Fiordland National Park was undertaken. Birds were caught and banded and their behaviour, breeding and survival monitored for 4 years. The relationship between yellowhead distribution and vegetation, topography, and fertility were investigated in part of Mt Aspiring National Park during one summer.  Yellowheads suffered high rates of predation from stoats during "plagues" that occurred after heavy beech seeding. Three aspects of yellowhead biology made them vulnerable to mammalian predation: (1) they nested in holes and predators killed not only eggs and nestlings, but also incubating adults; (2) only the females incubated, thus losses to predators had a greater effect on the population than if equal numbers of males and females were killed; and (3) yellowheads nested later than most other forest passerines and were still nesting when stoat numbers reached their summer peak. Though the yellowhead's hole nesting habit made them vulnerable to mammals it restricted nest parasitism and predation by long-tailed cuckoos and hole nesting is likely to have evolved in response to cuckoos. Yellowheads were found to be tall forest specialists; they occurred more frequently in tall forests than short ones, and preferentially used the largest trees. Their choice of nest sites had no effect on their preference for any forest types. The forests they favoured grew mainly on fertile valley floors at low altitudes. Yellowhead populations in "good habitats" raised two broods a year and these populations are probably sufficiently productive to withstand stoat plagues occurring once every 5 years, the average frequency of this event. Populations in "poor habitats" raise only one brood and their productivity is probably insufficient to match losses to stoats. Such populations are probably slowly declining, and are very vulnerable to extinction. A habitat suitability index was devised and forests in the north of the South Island from which yellowheads have disappeared, were compared with those in the south where yellowheads persist. Northern forests were as good for yellowheads as southern ones. Thus, the combination of habitat preference and predation cannot account for the recent disappearance of yellowheads from the northern half of the South Island. The decline in yellowheads was attributed to both predation by introduced mammals and competition with introduced vespulid wasps. Predation may have eliminated yellowheads from podocarp-dominated forests where predator numbers are constantly high, but they survive in some beech forests where predator numbers rise only once every five years. However, even within beech forests only the most productive populations are sufficiently productive to survive predation and these populations are probably susceptible to competition with wasps which eat large numbers of invertebrates. Yellowheads are likely to be more vulnerable to wasp competition than other forest insectivores because: (1) predation has reduced their productivity more than other birds because they nest in holes; (2) they are specialised in low altitude, tall forest that the wasps also favour; (3) their breeding is later than most other forest birds and their period of juvenile dependence much longer. Yellowheads are still feeding fledgling yellowheads at the time when wasps numbers reach their peak in the autumn, whereas the offspring of other forest birds are independent by this stage.</p>


Western Birds ◽  
2021 ◽  
Vol 52 (4) ◽  
pp. 296-310
Author(s):  
Carolyn A. Cook ◽  
Glen T. Hvenegaard ◽  
Geoffrey L. Holroyd ◽  
Hardy Pletz ◽  
Myrna Pearman

Dispersal patterns deepen our understanding of population dynamics. Dispersal by all age and sex classes enhances a species’ ability to respond to environmental changes, such as in habitat availability, artificial nest sites, and climate. The migration dynamics of the eastern subspecies of the Purple Martin (Progne subis subis) are well known, but we know less about its patterns of annual dispersal. We compared the frequency, distance, and direction of dispersal by each age/sex cohort of martins in central Alberta, at the northwestern limit of their breeding range. We used two datasets: (1) adult martins banded in central Alberta as nestlings and encountered during the summers of 2017 and 2018, and (2) records of encounters of banded martins in Canada from 1935 to 2016 from the Canadian Wildlife Service’s Bird Banding Office. In Alberta, 36% of birds dispersed from natal sites (by an average distance of 24 km), most commonly to the northeast. Across Canada, 29% of birds dispersed (by an average distance of 183 km), most commonly to the east and northeast. In Alberta, martins at least two years old dispersed less frequently than yearlings since some older martins returned to their natal site after first breeding elsewhere. Dispersal distances of after-second-year martins, which represent natal plus breeding dispersal, were greater than those of second-year birds, which represent natal dispersal alone. Thus some martins continue to disperse after their second year and do not maintain complete fidelity to a breeding site, which is different from our current understanding.


Oryx ◽  
2021 ◽  
pp. 1-8
Author(s):  
F. Zino ◽  
M. Biscoito ◽  
A. Buckle

Abstract The largest colony of Cory's shearwater Calonectris borealis nests on the island of Selvagem Grande in the north-eastern Atlantic. In 2002, a programme of eradication was conducted to remove two alien invasive mammals, the house mouse Mus musculus and European rabbit Oryctolagus cuniculus. Preliminary studies recorded beneficial effects of the eradications for a variety of plant and animal species, including Cory's shearwater. We recorded fledging rates of shearwaters for 1982–2001, prior to the eradication, and for 2002–2020, after the eradication, from two quadrats, each containing 134–329 nest sites. Although there was annual fluctuation in fledging rates in the quadrats, the mean rate of 40.74 ±SD 3.92 fledglings per 100 nest sites for the two quadrats combined prior to the eradication of mammals increased significantly, to 52.88 ± SD 5.03 per 100 nest sites, after the eradications. Because the two mammals were removed synchronously it is difficult to know which factors depressed fledging of Cory's shearwaters on Selvagem Grande. However, the predatory behaviour of house mice on other oceanic islands, and the fact that increased fledging was seen soon after the eradications occurred, suggest predation by house mice on shearwater hatchlings was the main cause of losses.


Sign in / Sign up

Export Citation Format

Share Document