arid environments
Recently Published Documents


TOTAL DOCUMENTS

1158
(FIVE YEARS 401)

H-INDEX

57
(FIVE YEARS 8)

2022 ◽  
Vol 32 (1) ◽  
pp. 21-27
Author(s):  
Osama Mohawesh ◽  
Ammar Albalasmeh ◽  
Sanjit Deb ◽  
Sukhbir Singh ◽  
Catherine Simpson ◽  
...  

Colored shading nets have been increasingly studied in semi-arid crop production systems, primarily because of their ability to reduce solar radiation with the attendant reductions in air, plant, and soil temperatures. However, there is a paucity of research concerning the impact of colored shading nets on various crops grown under semi-arid environments, particularly the sweet pepper (Capsicum annum) production system. This study aimed to investigate the effects of three colored shading net treatments (i.e., white, green, and black shading nets with 50% shading intensity and control with unshaded conditions) on the growth and instantaneous water use efficiency (WUE) of sweet pepper. The results showed that all colored shading nets exhibited significantly lower daytime air temperatures and light intensity (22 to 28 °C and 9992 lx, respectively) compared with the control (32 to 37 °C and 24,973 lx, respectively). There were significant differences in sweet pepper growth performance among treatments, including plant height, shoot dry weight, leaf area, leaf chlorophyll content, and vitamin C in ripened fruit. The enhanced photosynthetic rates were observed in sweet pepper plants under the colored shading nets compared with control plants. WUE increased among the colored shading net treatments in the following order: control ≤ white < black < green. Overall, the application of green and black shading nets to sweet pepper production systems under semi-arid environments significantly enhanced plant growth responses and WUE.


2022 ◽  
Vol 14 (2) ◽  
pp. 348
Author(s):  
Yashon O. Ouma ◽  
Lone Lottering ◽  
Ryutaro Tateishi

This study presents a remote sensing-based index for the prediction of soil erosion susceptibility within railway corridors. The empirically derived index, Normalized Difference Railway Erosivity Index (NDReLI), is based on the Landsat-8 SWIR spectral reflectances and takes into account the bare soil and vegetation reflectances especially in semi-arid environments. For the case study of the Botswana Railway Corridor (BRC), the NDReLI results are compared with the RUSLE and the Soil Degradation Index (SDI). The RUSLE model showed that within the BRC, the mean annual soil loss index was at 0.139 ton ha−1 year−1, and only about 1% of the corridor area is susceptible to high (1.423–3.053 ton ha−1 year−1) and very high (3.053–5.854 ton ha−1 year−1) soil loss, while SDI estimated 19.4% of the railway corridor as vulnerable to soil degradation. NDReLI results based on SWIR1 (1.57–1.65 μm) predicted the most vulnerable areas, with a very high erosivity index (0.36–0.95), while SWIR2 (2.11–2.29 μm) predicted the same regions at a high erosivity index (0.13–0.36). From empirical validation using previous soil erosion events within the BRC, the proposed NDReLI performed better that the RUSLE and SDI models in the prediction of the spatial locations and extents of susceptibility to soil erosion within the BRC.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 187
Author(s):  
Jorge Juan-Vicedo ◽  
Francisco Serrano-Martínez ◽  
Miriam Cano-Castillo ◽  
José Luis Casas

Tetraclinis articulata (Vahl) Masters is an endangered tree growing in coastal and arid environments that is widely exploited by the timber and resin industry, among other applications. In this context, the use of in vitro techniques is highly encouraged for its propagation. We present a protocol for micropropagation using twigs from adult trees as a source of explants. The Schenk and Hildebrandt basal medium (SH) supplemented with 30 g L−1 sucrose, 6.5 g L−1 plant agar, 4.0 mg L−1 6-benzyladenine (BA), and 0.05 mg L−1 1-naphthaleneacetic acid (NAA) provided the optimum multiplication rate (90.48 ± 9.52 explants with basal shoots and 2.58 ± 0.29 basal shoots per explant). Application of activated charcoal (AC) or ½ Knop solution in a liquid overlay produced significantly longer shoots. Supplementation of solid media with indole-3-butyric acid (IBA) or NAA gave low rooting percentages (<17%). Addition of 0.9 g L−1 AC improved rooting (40%) but rooting performance was optimal (66.7%) after a pulse treatment consisting of 4 h immersion in liquid SH medium without growth regulators, followed by 8 weeks of cultivation. Rooted microplants were successfully acclimatized (93.33%) in a peat moss and vermiculite mixture (1:1 v/v ratio). The genetic stability of the in vitro regenerated plantlets was confirmed using the randomly amplified polymorphic DNA (RAPD) technique. Explant survival and growth remained higher than 90% after 28 weeks of cold storage at both 4 °C and 10 °C. The protocol presented here allows for largescale T. articulata production and could be applied for both ex situ conservation strategies and industrial purposes.


2022 ◽  
Vol 14 (1) ◽  
pp. 234
Author(s):  
Mary C. Barlow ◽  
Xinxiang Zhu ◽  
Craig L. Glennie

Convolutional neural networks (CNNs) are becoming an increasingly popular approach for classification mapping of large complex regions where manual data collection is too time consuming. Stream boundaries in hyper-arid polar regions such as the McMurdo Dry Valleys (MDVs) in Antarctica are difficult to locate because they have little hydraulic flow throughout the short summer months. This paper utilizes a U-Net CNN to map stream boundaries from lidar derived rasters in Taylor Valley located within the MDVs, covering ∼770 km2. The training dataset consists of 217 (300 × 300 m2) well-distributed tiles of manually classified stream boundaries with diverse geometries (straight, sinuous, meandering, and braided) throughout the valley. The U-Net CNN is trained on elevation, slope, lidar intensity returns, and flow accumulation rasters. These features were used for detection of stream boundaries by providing potential topographic cues such as inflection points at stream boundaries and reflective properties of streams such as linear patterns of wetted soil, water, or ice. Various combinations of these features were analyzed based on performance. The test set performance revealed that elevation and slope had the highest performance of the feature combinations. The test set performance analysis revealed that the CNN model trained with elevation independently received a precision, recall, and F1 score of 0.94±0.05, 0.95±0.04, and 0.94±0.04 respectively, while slope received 0.96±0.03, 0.93±0.04, and 0.94±0.04, respectively. The performance of the test set revealed higher stream boundary prediction accuracies along the coast, while inland performance varied. Meandering streams had the highest stream boundary prediction performance on the test set compared to the other stream geometries tested here because meandering streams are further evolved and have more distinguishable breaks in slope, indicating stream boundaries. These methods provide a novel approach for mapping stream boundaries semi-automatically in complex regions such as hyper-arid environments over larger scales than is possible for current methods.


Author(s):  
Djilali Tahri

Abstract Arid and desert environments are characterized by the sparse and discontinuous vegetation cover. Species that have been able to survive difficult bioclimatic conditions and adapt from generation to generation in these areas had to develop physiological and biochemical mechanisms of tolerance and/or resistance. The use of secondary metabolites, specifically terpenoids, is predominant in most of the biotic and abiotic interactions in which these plants are involved. Studies have shown their roles in the prevention of oxidative stress by intervening in thermo-tolerance, water stress, and salt stress generalized in a model of "the protective role of volatile compounds" explained by a single biochemical mechanism. Other studies have proven the functions of terpenoids in direct and indirect defenses against natural enemies, herbivores, and pathogenic microorganisms, in the attraction of pollinators, in competition and facilitation and other interactions between plants. This review mainly summarizes the recent research progress on the adaptation mechanisms of plants in arid environments and the biological and ecological roles of terpenoids in the various biotic and abiotic interactions.


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 64
Author(s):  
Juan Carlos Molina-Moral ◽  
Alfonso Moriana-Elvira ◽  
Francisco José Pérez-Latorre

Olive trees are one of the few alternative crops available for farmers in arid environments. In many of these regions, surface irrigation is increasing. The aim of this study was to estimate the pattern of water soil reserves through the season considering different climatic scenarios, limitations in irrigation scheduling, and irrigation systems. Modeling was performed with the most common type of soil, and a tree density of 10 × 10 m was used. Three different climatic scenarios were estimated using eighteen agroclimatic stations along the zone (Jaén, Spain). In these climatic scenarios, different irrigation strategies were considered. First, the percentages of maximum flow available (100%, 50%, and 33%) were used. In each of these flows, the days available for irrigation were considered: daily irrigation (IDD), 20 days per month (ID20), and no irrigation, during August (RDI). The results suggest that a 33% flow strategy, the most common in the surveyed area, would produce the greatest water-stress period in the most sensitive phenological stage. However, 100%, in all scenarios, and 50% (only IDD and RDI) would obtain the best water status. According to the estimated water applied, 50% was the most advisable strategy. However, in a minimum rainfall scenario, water needs could be excessive.


Author(s):  
Asher Y. Rosinger ◽  
Hilary J. Bethancourt ◽  
Zane S. Swanson ◽  
Kaylee Lopez ◽  
W. Larry Kenney ◽  
...  

Author(s):  
Haruka Tomishima ◽  
Kathleen Luo ◽  
Alyson E. Mitchell

Almonds ( Prunus dulcis) are one of the most consumed tree-nuts worldwide, with commercial production in arid environments such as California, Spain, and Australia. The high consumption of almonds is partly due to their versatile usage in products such as gluten-free flour and dairy alternatives as well as them being a source of protein in vegetarian diets. They contain high concentrations of health-promoting compounds such as Vitamin E and have demonstrated benefits for reducing the risk of cardiovascular disease and improving vascular health. In addition, almonds are the least allergenic tree nut and contain minute quantities of cyanogenic glycosides. Production has increased significantly in the past two decades with 3.12 billion pounds of kernel meat produced in California alone in 2020 (USDA 2021), leading to a new emphasis on the valorization of the coproducts (e.g., hulls, shells, skins, and blanch water). This article presents a review of the chemical composition of almond kernels (e.g., macro and micronutrients, phenolic compounds, cyanogenic glycosides, and allergens) and the current research exploring the valorization of almond coproducts. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document