Structure and Agency in Complex Adaptive Systems A review of Dynamics in Human and Primate Societies: Agent-based Modeling of Social and Spatial Processes, edited by Timothy A. Kohler & George J. Gummerman, 2000. (Santa Fe Institute Studies in the Sciences of Complexity.) Oxford & New York (NY): Oxford University Press; ISBN 0-19-513168-1 paperback, £28.99 & US$40; ISBN 0-19-513167-3 hardback, £46.99 & US$65, 412 pp., ills.

2001 ◽  
Vol 11 (2) ◽  
pp. 274-276 ◽  
Author(s):  
Stephen J. Shennan

Agent based modeling is one of many tools, from the complexity sciences, available to investigate complex policy problems. Complexity science investigates the non-linear behavior of complex adaptive systems. Complex adaptive systems can be found across a broad spectrum of the natural and human created world. Examples of complex adaptive systems include various ecosystems, economic markets, immune response, and most importantly for this research, human social organization and competition / cooperation. The common thread among these types of systems is that they do not behave in a mechanistic way which has led to problems in utilizing traditional methods for studying them. Complex adaptive systems do not follow the Newtonian paradigm of systems that behave like a clock works whereby understanding the workings of each of the parts provides an understanding of the whole. By understanding the workings of the parts and a few external rules, predictions can be made about the behavior of the system as a whole under varying circumstances. Such systems are labeled deterministic (Zimmerman, Lindberg, & Plsek, 1998).


2013 ◽  
Vol 5 (3) ◽  
pp. 33-53 ◽  
Author(s):  
Amnah Siddiqa ◽  
Muaz Niazi

HIV/AIDS spread depends upon complex patterns of interaction among various subsets emerging at population level. This added complexity makes it difficult to study and model AIDS and its dynamics. AIDS is therefore a natural candidate to be modeled using agent-based modeling, a paradigm well-known for modeling Complex Adaptive Systems (CAS). While agent-based models are well-known to effectively model CAS, often times models can tend to be ambiguous and using only using text-based specifications (such as ODD) making models difficult to be replicated. Previous work has shown how formal specification may be used in conjunction with agent-based modeling to develop models of various CAS. However, to the best of the authors’ knowledge, no such model has been developed in conjunction with AIDS. In this paper, we present a Formal Agent-Based Simulation modeling framework (FABS-AIDS) for an AIDS-based CAS. FABS-AIDS employs the use of a formal specification model in conjunction with an agent-based model to reduce ambiguity as well as improve clarity in the model definition. The proposed model demonstrates the effectiveness of using formal specification in conjunction with agent-based simulation for developing models of CAS in general and, social network-based agent-based models, in particular.


Author(s):  
J. Stephen Lansing

Complex adaptive systems, as conceived by John Holland, are groups of agents engaged in a process of coadaptation, in which adaptive moves by individuals have consequences for the group. Holland and others have shown that under certain circumstances simple models of this process show surprising abilities to self-organize (Holland 1993; Kauffman 1993). Complex adaptive systems have interesting mathematical properties, and the process of "anti-chaos"-—the spontaneous crystallization of ordered patterns in initially disordered networks— has become a new area of interdisciplinary research. But the question of whether these models can illuminate real world processes is still largely open. Not long ago John Maynard Smith described the study of complex adaptive systems as "fact-free science" (1995). This chapter has two purposes. First, in response to Maynard Smith, I will show how the concept of ecological feedback in complex adaptive systems provides a simple and powerful explanation for the structure and persistence of cooperative networks among Balinese rice farmers. Second, I will generalize this explanation to shed light on the emergence of cooperation in a class of social systems where interactions with the natural world create both rewards and punishments. But before turning to these examples, in line with the purposes of this volume I will comment on the ideas and assumptions that underlie the use of models in this analysis. "Society is a human product. Society is an objective reality. Man [sic] is a social product." With this epigram Peter Berger and Thomas Luckmann neatly encapsulated a fundamental problem in social theory (1967:61). In American anthropology today this paradox is often posed as a conflict between "structure" and "agency," where the former refers to ideational, economic, institutional, or psychological systems that are represented as generating social reality; and the latter to the ability of individual social actors to modify their own social worlds. The same paradox recurs in classical social theory, such as Jürgen Habermas' insistence on the need to somehow reconcile actor-focused and system-level social theories (Habermas 1985, 1987).


Author(s):  
Professor Michael E. Wolf-Branigin ◽  
Dr William G. Kennedy ◽  
Dr Emily S. Ihara ◽  
Dr Catherine J. Tompkins

Sign in / Sign up

Export Citation Format

Share Document