Generalized geometric theories and set-generated classes

2014 ◽  
Vol 25 (7) ◽  
pp. 1466-1483 ◽  
Author(s):  
PETER ACZEL ◽  
HAJIME ISHIHARA ◽  
TAKAKO NEMOTO ◽  
YASUSHI SANGU

We introduce infinitary propositional theories over a set and their models which are subsets of the set, and define a generalized geometric theory as an infinitary propositional theory of a special form. The main result is thatthe class of models of a generalized geometric theory is set-generated. Here, a class$\mathcal{X}$of subsets of a set is set-generated if there exists a subsetGof$\mathcal{X}$such that for each α ∈$\mathcal{X}$, and finitely enumerable subset τ of α there exists a subset β ∈Gsuch that τ ⊆ β ⊆ α. We show the main result in the constructive Zermelo–Fraenkel set theory (CZF) with an additional axiom, called the set generation axiom which is derivable inCZF, both from the relativized dependent choice scheme and from a regular extension axiom. We give some applications of the main result to algebra, topology and formal topology.

2005 ◽  
Vol 70 (4) ◽  
pp. 1233-1254 ◽  
Author(s):  
Michael Rathjen

AbstractThis paper proves that the disjunction property, the numerical existence property. Church's rule, and several other metamathematical properties hold true for Constructive Zermelo-Fraenkel Set Theory, CZF, and also for the theory CZF augmented by the Regular Extension Axiom.As regards the proof technique, it features a self-validating semantics for CZF that combines realizability for extensional set theory and truth.


2019 ◽  
Vol 27 (5) ◽  
pp. 746-765
Author(s):  
Eman Dihoum ◽  
Michael Rathjen

AbstractEspecially nice models of intuitionistic set theories are realizability models $V({\mathcal A})$, where $\mathcal A$ is an applicative structure or partial combinatory algebra. This paper is concerned with the preservation of various choice principles in $V({\mathcal A})$ if assumed in the underlying universe $V$, adopting Constructive Zermelo–Fraenkel as background theory for all of these investigations. Examples of choice principles are the axiom schemes of countable choice, dependent choice, relativized dependent choice and the presentation axiom. It is shown that any of these axioms holds in $V(\mathcal{A})$ for every applicative structure $\mathcal A$ if it holds in the background universe.1 It is also shown that a weak form of the countable axiom of choice, $\textbf{AC}^{\boldsymbol{\omega , \omega }}$, is rendered true in any $V(\mathcal{A})$ regardless of whether it holds in the background universe. The paper extends work by McCarty (1984, Realizability and Recursive Mathematics, PhD Thesis) and Rathjen (2006, Realizability for constructive Zermelo–Fraenkel set theory. In Logic Colloquium 03, pp. 282–314).


1977 ◽  
Vol 42 (4) ◽  
pp. 523-526 ◽  
Author(s):  
J. M. Henle

Beginning with Ramsey's theorem of 1930, combinatorists have been intrigued with the notion of large cardinals satisfying partition relations. Years of research have established the smaller ones, weakly ineffable, Erdös, Jonsson, Rowbottom and Ramsey cardinals to be among the most interesting and important large cardinals in set theory. Recently, cardinals satisfying more powerful infinite-exponent partition relations have been examined with growing interest. This is due not only to their inherent qualities and the fact that they imply the existence of other large cardinals (Kleinberg [2], [3]), but also to the fact that the Axiom of Determinacy (AD) implies the existence of great numbers of such cardinals (Martin [5]).That these properties are more often than not inconsistent with the full Axiom of Choice (Kleinberg [4]) somewhat increases their charm, for the theorems concerning them tend to be a little odd, and their proofs, circumforaneous. The properties are, as far as anyone knows, however, consistent with Dependent Choice (DC).Our basic theorem will be the following: If k > ω and k satisfies k→(k)k then the least cardinal δ such that has a δ-additive, uniform ultrafilter. In addition, if ACω is assumed, we will show that δ is greater than ω, and hence a measurable cardinal. This result will be strengthened somewhat when we prove that for any k, δ, if then .


1977 ◽  
Vol 42 (2) ◽  
pp. 179-190 ◽  
Author(s):  
David Pincus ◽  
Robert M. Solovay

Nonprincipal ultrafilters are harder to define in ZFC, and harder to obtain in ZF + DC, than nonprincipal measures.The function μ from P(X) to the closed interval [0, 1] is a measure on X if μ. is finitely additive on disjoint sets and μ(X) = 1. (P is the power set.) μ is nonprincipal if μ ({x}) = 0 for each x Є X. μ is an ultrafilter if Range μ= {0, 1}. The existence of nonprincipal measures and ultrafilters on any infinite X follows from the axiom of choice.Nonprincipal measures cannot necessarily be defined in ZFC. (ZF is Zermelo–Fraenkel set theory. ZFC is ZF with choice.) In ZF alone they cannot even be proved to exist. This was first established by Solovay [14] using an inaccessible cardinal. In the model of [14] no nonprincipal measure on ω is even ODR (definable from ordinal and real parameters). The HODR (hereditarily ODR) sets of this model form a model of ZF + DC (dependent choice) in which no nonprincipal measure on ω exists. Pincus [8] gave a model with the same properties making no use of an inaccessible. (This model was also known to Solovay.) The second model can be combined with ideas of A. Blass [1] to give a model of ZF + DC in which no nonprincipal measures exist on any set. Using this model one obtains a model of ZFC in which no nonprincipal measure on the set of real numbers is ODR. H. Friedman, in private communication, previously obtained such a model of ZFC by a different method. Our construction will be sketched in 4.1.


1981 ◽  
Vol 46 (4) ◽  
pp. 822-842 ◽  
Author(s):  
Howard Becker

Since the discovery of forcing in the early sixties, it has been clear that many natural and interesting mathematical questions are not decidable from the classical axioms of set theory, ZFC. Therefore some mathematicians have been studying the consequences of stronger set theoretic assumptions. Two new types of axioms that have been the subject of much research are large cardinal axioms and axioms asserting the determinacy of definable games. The two appear at first glance to be unrelated; one of the most surprising discoveries of recent research is that this is not the case.In this paper we will be assuming the axiom of determinacy (AD) plus the axiom of dependent choice (DC). AD is false, since it contradicts the axiom of choice. However every set in L[R] is ordinal definable from a real. Our axiom that definable games are determined implies that every game in L[R] is determined (in V), and since a strategy is a real, it is determined in L[R]. That is, L[R] ⊨ AD. The axiom of choice implies L[R] ⊨ DC. So by embedding ourselves in L[R], we can assume AD + DC and begin proving theorems. These theorems true in L[R] imply corresponding theorems in V, by e.g. changing “every set” to “every set in L[R]”. For more information on AD as an axiom, and on some of the points touched on here, the reader should consult [14], particularly §§7D and 8I. In this paper L[R] will no longer even be mentioned. We just assume AD for the rest of the paper.


2021 ◽  
Vol Volume 17, Issue 3 ◽  
Author(s):  
Jean-Louis Krivine

The theory of classical realizability is a framework for the Curry-Howard correspondence which enables to associate a program with each proof in Zermelo-Fraenkel set theory. But, almost all the applications of mathematics in physics, probability, statistics, etc. use Analysis i.e. the axiom of dependent choice (DC) or even the (full) axiom of choice (AC). It is therefore important to find explicit programs for these axioms. Various solutions have been found for DC, for instance the lambda-term called "bar recursion" or the instruction "quote" of LISP. We present here the first program for AC.


2014 ◽  
Vol 14 (01) ◽  
pp. 1450005 ◽  
Author(s):  
Benno van den Berg ◽  
Ieke Moerdijk

We propose an extension of Aczel's constructive set theory CZF by an axiom for inductive types and a choice principle, and show that this extension has the following properties: it is interpretable in Martin-Löf's type theory (hence acceptable from a constructive and generalized-predicative standpoint). In addition, it is strong enough to prove the Set Compactness theorem and the results in formal topology which make use of this theorem. Moreover, it is stable under the standard constructions from algebraic set theory, namely exact completion, realizability models, forcing as well as more general sheaf extensions. As a result, methods from our earlier work can be applied to show that this extension satisfies various derived rules, such as a derived compactness rule for Cantor space and a derived continuity rule for Baire space. Finally, we show that this extension is robust in the sense that it is also reflected by the model constructions from algebraic set theory just mentioned.


2003 ◽  
Vol 49 (5) ◽  
pp. 511-518 ◽  
Author(s):  
Michael Rathjen ◽  
Robert S. Lubarsky

1974 ◽  
Vol 39 (3) ◽  
pp. 579-583 ◽  
Author(s):  
Paul E. Cohen

Suppose M is a countable standard transitive model of set theory. P. J. Cohen [2] showed that if κ is an infinite cardinal of M then there is a one-to-one function Fκ from κ into the set of real numbers such that M[Fκ] is a model of set theory with the same cardinals as M.If Tκ is the range of Fκ then Cohen also showed [2] that M[Tκ] fails to satisfy the axiom of choice. We will give an easy proof of this fact.If κ, λ are infinite we will also show that M[Tκ] is elementarily equivalent to M[Tλ] and that (] in M[Fλ]) is elementarily equivalent to (] in M[FK]).Finally we show that there may be an N ∈ M[GK] which is a standard model of set theory (without the axiom of choice) and which has, from the viewpoint of M[GK], more real numbers than ordinals.We write ZFC and ZF for Zermelo-Fraenkel set theory, respectively with and without the axiom of choice (AC). GBC is Gödel-Bernays' set theory with AC. DC and ACℵo are respectively the axioms of dependent choice and of countable choice defined in [6].Lower case Greek characters (other than ω) are used as variables over ordinals. When α is an ordinal, R(α) is the set of all sets with rank less than α.


Sign in / Sign up

Export Citation Format

Share Document