Definability of measures and ultrafilters

1977 ◽  
Vol 42 (2) ◽  
pp. 179-190 ◽  
Author(s):  
David Pincus ◽  
Robert M. Solovay

Nonprincipal ultrafilters are harder to define in ZFC, and harder to obtain in ZF + DC, than nonprincipal measures.The function μ from P(X) to the closed interval [0, 1] is a measure on X if μ. is finitely additive on disjoint sets and μ(X) = 1. (P is the power set.) μ is nonprincipal if μ ({x}) = 0 for each x Є X. μ is an ultrafilter if Range μ= {0, 1}. The existence of nonprincipal measures and ultrafilters on any infinite X follows from the axiom of choice.Nonprincipal measures cannot necessarily be defined in ZFC. (ZF is Zermelo–Fraenkel set theory. ZFC is ZF with choice.) In ZF alone they cannot even be proved to exist. This was first established by Solovay [14] using an inaccessible cardinal. In the model of [14] no nonprincipal measure on ω is even ODR (definable from ordinal and real parameters). The HODR (hereditarily ODR) sets of this model form a model of ZF + DC (dependent choice) in which no nonprincipal measure on ω exists. Pincus [8] gave a model with the same properties making no use of an inaccessible. (This model was also known to Solovay.) The second model can be combined with ideas of A. Blass [1] to give a model of ZF + DC in which no nonprincipal measures exist on any set. Using this model one obtains a model of ZFC in which no nonprincipal measure on the set of real numbers is ODR. H. Friedman, in private communication, previously obtained such a model of ZFC by a different method. Our construction will be sketched in 4.1.

2000 ◽  
Vol 65 (1) ◽  
pp. 461-473 ◽  
Author(s):  
Carlos A. Di Prisco ◽  
James M. Henle

In this paper, we study partition properties of the set of real numbers. The meaning of “set of real numbers” will vary, referring at times to the collection of sequences of natural numbers, ωω; the collection of infinite sets of natural numbers [ω]ω; the collection of infinite sequences of zeroes and ones, 2ω; or (ω), the power set of ω.The archetype for the relations is the property: “all sets of reals are Ramsey,” in the notation of Erdős and Hajnal, ω → (ω)ω. This states that for every partition F : [ω]ω → 2, there is an infinite set H ∈ [ω]ω such that F is constant on [H]ω. Like virtually all of the properties we will discuss, it contradicts the Axiom of Choice but is compatible with the principle of dependent choices (DC). DC will be used throughout the paper wihtout further mention.The properties discussed in this paper will vary in two respects. Some, like ω → (ω)ω, will be incompatible with the existence of an ultrafilter on ω (UF) and some will not. Some are known to be consistent relative to ZF alone, and for some, such as ω → (ω)ω, the question is still open. All properties, however, are true in Solovay's model and hence are consistent relative to Con(ZF + “there exists an inaccessible cardinal”).


1974 ◽  
Vol 39 (3) ◽  
pp. 579-583 ◽  
Author(s):  
Paul E. Cohen

Suppose M is a countable standard transitive model of set theory. P. J. Cohen [2] showed that if κ is an infinite cardinal of M then there is a one-to-one function Fκ from κ into the set of real numbers such that M[Fκ] is a model of set theory with the same cardinals as M.If Tκ is the range of Fκ then Cohen also showed [2] that M[Tκ] fails to satisfy the axiom of choice. We will give an easy proof of this fact.If κ, λ are infinite we will also show that M[Tκ] is elementarily equivalent to M[Tλ] and that (] in M[Fλ]) is elementarily equivalent to (] in M[FK]).Finally we show that there may be an N ∈ M[GK] which is a standard model of set theory (without the axiom of choice) and which has, from the viewpoint of M[GK], more real numbers than ordinals.We write ZFC and ZF for Zermelo-Fraenkel set theory, respectively with and without the axiom of choice (AC). GBC is Gödel-Bernays' set theory with AC. DC and ACℵo are respectively the axioms of dependent choice and of countable choice defined in [6].Lower case Greek characters (other than ω) are used as variables over ordinals. When α is an ordinal, R(α) is the set of all sets with rank less than α.


2011 ◽  
Vol 17 (3) ◽  
pp. 361-393 ◽  
Author(s):  
José Ferreirós

AbstractSet theory deals with the most fundamental existence questions in mathematics-questions which affect other areas of mathematics, from the real numbers to structures of all kinds, but which are posed as dealing with the existence of sets. Especially noteworthy are principles establishing the existence of some infinite sets, the so-called “arbitrary sets.” This paper is devoted to an analysis of the motivating goal of studying arbitrary sets, usually referred to under the labels ofquasi-combinatorialismorcombinatorial maximality. After explaining what is meant by definability and by “arbitrariness,” a first historical part discusses the strong motives why set theory was conceived as a theory of arbitrary sets, emphasizing connections with analysis and particularly with the continuum of real numbers. Judged from this perspective, the axiom of choice stands out as a most central and natural set-theoretic principle (in the sense of quasi-combinatorialism). A second part starts by considering the potential mismatch between the formal systems of mathematics and their motivating conceptions, and proceeds to offer an elementary discussion of how far the Zermelo–Fraenkel system goes in laying out principles that capture the idea of “arbitrary sets”. We argue that the theory is rather poor in this respect.


1994 ◽  
Vol 59 (1) ◽  
pp. 30-40 ◽  
Author(s):  
Lorenz Halbeisen ◽  
Saharon Shelah

AbstractIn this paper, we consider certain cardinals in ZF (set theory without AC, the axiom of choice). In ZFC (set theory with AC), given any cardinals and , either ≤ or ≤ . However, in ZF this is no longer so. For a given infinite set A consider seq1-1(A), the set of all sequences of A without repetition. We compare |seq1-1(A)|, the cardinality of this set, to ||, the cardinality of the power set of A. What is provable about these two cardinals in ZF? The main result of this paper is that ZF ⊢ ∀A(| seq1-1(A)| ≠ ||), and we show that this is the best possible result. Furthermore, it is provable in ZF that if B is an infinite set, then | fin(B)| < | (B*)| even though the existence for some infinite set B* of a function ƒ from fin(B*) onto (B*) is consistent with ZF.


1973 ◽  
Vol 8 (3) ◽  
pp. 413-421 ◽  
Author(s):  
G.P. Monro

One problem in set theory without the axiom of choice is to find a reasonable way of estimating the size of a non-well-orderable set; in this paper we present evidence which suggests that this may be very hard. Given an arbitrary fixed aleph κ we construct a model of set theory which contains a set X such that if Y ⊆ X then either Y or X - Y is finite, but such that κ can be mapped into S(S(S(X))). So in one sense X is large and in another X is one of the smallest possible infinite sets. (Here S(X) is the power set of X.)


Author(s):  
Asaf Karagila ◽  
Philipp Schlicht

Cohen’s first model is a model of Zermelo–Fraenkel set theory in which there is a Dedekind-finite set of real numbers, and it is perhaps the most famous model where the Axiom of Choice fails. We force over this model to add a function from this Dedekind-finite set to some infinite ordinal κ . In the case that we force the function to be injective, it turns out that the resulting model is the same as adding κ Cohen reals to the ground model, and that we have just added an enumeration of the canonical Dedekind-finite set. In the case where the function is merely surjective it turns out that we do not add any reals, sets of ordinals, or collapse any Dedekind-finite sets. This motivates the question if there is any combinatorial condition on a Dedekind-finite set A which characterises when a forcing will preserve its Dedekind-finiteness or not add new sets of ordinals. We answer this question in the case of ‘Adding a Cohen subset’ by presenting a varied list of conditions each equivalent to the preservation of Dedekind-finiteness. For example, 2 A is extremally disconnected, or [ A ] < ω is Dedekind-finite.


2020 ◽  
Vol 30 (1) ◽  
pp. 447-457
Author(s):  
Michael Rathjen

Abstract While power Kripke–Platek set theory, ${\textbf{KP}}({\mathcal{P}})$, shares many properties with ordinary Kripke–Platek set theory, ${\textbf{KP}}$, in several ways it behaves quite differently from ${\textbf{KP}}$. This is perhaps most strikingly demonstrated by a result, due to Mathias, to the effect that adding the axiom of constructibility to ${\textbf{KP}}({\mathcal{P}})$ gives rise to a much stronger theory, whereas in the case of ${\textbf{KP}}$, the constructible hierarchy provides an inner model, so that ${\textbf{KP}}$ and ${\textbf{KP}}+V=L$ have the same strength. This paper will be concerned with the relationship between ${\textbf{KP}}({\mathcal{P}})$ and ${\textbf{KP}}({\mathcal{P}})$ plus the axiom of choice or even the global axiom of choice, $\textbf{AC}_{\tiny {global}}$. Since $L$ is the standard vehicle to furnish a model in which this axiom holds, the usual argument for demonstrating that the addition of ${\textbf{AC}}$ or $\textbf{AC}_{\tiny {global}}$ to ${\textbf{KP}}({\mathcal{P}})$ does not increase proof-theoretic strength does not apply in any obvious way. Among other tools, the paper uses techniques from ordinal analysis to show that ${\textbf{KP}}({\mathcal{P}})+\textbf{AC}_{\tiny {global}}$ has the same strength as ${\textbf{KP}}({\mathcal{P}})$, thereby answering a question of Mathias. Moreover, it is shown that ${\textbf{KP}}({\mathcal{P}})+\textbf{AC}_{\tiny {global}}$ is conservative over ${\textbf{KP}}({\mathcal{P}})$ for $\varPi ^1_4$ statements of analysis. The method of ordinal analysis for theories with power set was developed in an earlier paper. The technique allows one to compute witnessing information from infinitary proofs, providing bounds for the transfinite iterations of the power set operation that are provable in a theory. As the theory ${\textbf{KP}}({\mathcal{P}})+\textbf{AC}_{\tiny {global}}$ provides a very useful tool for defining models and realizability models of other theories that are hard to construct without access to a uniform selection mechanism, it is desirable to determine its exact proof-theoretic strength. This knowledge can for instance be used to determine the strength of Feferman’s operational set theory with power set operation as well as constructive Zermelo–Fraenkel set theory with the axiom of choice.


2011 ◽  
Vol 4 (2) ◽  
pp. 186-204 ◽  
Author(s):  
OLIVER DEISER

We introduce a new simple first-order framework for theories whose objects are well-orderings (lists). A system ALT (axiomatic list theory) is presented and shown to be equiconsistent with ZFC (Zermelo Fraenkel Set Theory with the Axiom of Choice). The theory sheds new light on the power set axiom and on Gödel’s axiom of constructibility. In list theory there are strong arguments favoring Gödel’s axiom, while a bare analogon of the set theoretic power set axiom looks artificial. In fact, there is a natural and attractive modification of ALT where every object is constructible and countable. In order to substantiate our foundational interest in lists, we also compare sets and lists from the perspective of finite objects, arguing that lists are, from a certain point of view, conceptually simpler than sets.


1956 ◽  
Vol 21 (4) ◽  
pp. 350-366 ◽  
Author(s):  
Elliott Mendelson

1. The purpose of this paper is to show that, if the axioms of a system G of set theory are consistent, then it is impossible to prove from them the following weak form of the axiom of choice: (H1) For every denumerable set x of disjoint two-element sets, there is a set y, called a choice set for x, which contains exactly one element in common with each element of x. Among the axioms of the system G, we take, with minor modifications, Axioms A, B, C of Gödel [6]. Clearly, the independence of H1 implies that of all stronger propositions, including the general axiom of choice and the generalized continuum hypothesis.The proof depends upon ideas of Fraenkel and Mostowski, and proceeds in the following manner. Let a be a denumerable set of objects Δ0, Δ1, Δ2, …, the exact nature of which will be specified later. Let μj = {Δ2j, Δ2j+1} for each j, c = {μ0, μ1, μ2, …}, and b = [the sum set of a]. By transfinite induction, construct the class Vc which is the closure of b under the power-set operation. For each j, it is possible to define a 1–1 mapping of Vc onto itself with the following properties. The mapping preserves the ε-relation, or, more precisely, .


1981 ◽  
Vol 46 (4) ◽  
pp. 822-842 ◽  
Author(s):  
Howard Becker

Since the discovery of forcing in the early sixties, it has been clear that many natural and interesting mathematical questions are not decidable from the classical axioms of set theory, ZFC. Therefore some mathematicians have been studying the consequences of stronger set theoretic assumptions. Two new types of axioms that have been the subject of much research are large cardinal axioms and axioms asserting the determinacy of definable games. The two appear at first glance to be unrelated; one of the most surprising discoveries of recent research is that this is not the case.In this paper we will be assuming the axiom of determinacy (AD) plus the axiom of dependent choice (DC). AD is false, since it contradicts the axiom of choice. However every set in L[R] is ordinal definable from a real. Our axiom that definable games are determined implies that every game in L[R] is determined (in V), and since a strategy is a real, it is determined in L[R]. That is, L[R] ⊨ AD. The axiom of choice implies L[R] ⊨ DC. So by embedding ourselves in L[R], we can assume AD + DC and begin proving theorems. These theorems true in L[R] imply corresponding theorems in V, by e.g. changing “every set” to “every set in L[R]”. For more information on AD as an axiom, and on some of the points touched on here, the reader should consult [14], particularly §§7D and 8I. In this paper L[R] will no longer even be mentioned. We just assume AD for the rest of the paper.


Sign in / Sign up

Export Citation Format

Share Document