Some consequences of an infinite-exponent partition relation

1977 ◽  
Vol 42 (4) ◽  
pp. 523-526 ◽  
Author(s):  
J. M. Henle

Beginning with Ramsey's theorem of 1930, combinatorists have been intrigued with the notion of large cardinals satisfying partition relations. Years of research have established the smaller ones, weakly ineffable, Erdös, Jonsson, Rowbottom and Ramsey cardinals to be among the most interesting and important large cardinals in set theory. Recently, cardinals satisfying more powerful infinite-exponent partition relations have been examined with growing interest. This is due not only to their inherent qualities and the fact that they imply the existence of other large cardinals (Kleinberg [2], [3]), but also to the fact that the Axiom of Determinacy (AD) implies the existence of great numbers of such cardinals (Martin [5]).That these properties are more often than not inconsistent with the full Axiom of Choice (Kleinberg [4]) somewhat increases their charm, for the theorems concerning them tend to be a little odd, and their proofs, circumforaneous. The properties are, as far as anyone knows, however, consistent with Dependent Choice (DC).Our basic theorem will be the following: If k > ω and k satisfies k→(k)k then the least cardinal δ such that has a δ-additive, uniform ultrafilter. In addition, if ACω is assumed, we will show that δ is greater than ω, and hence a measurable cardinal. This result will be strengthened somewhat when we prove that for any k, δ, if then .

1971 ◽  
Vol 36 (2) ◽  
pp. 305-308 ◽  
Author(s):  
E. M. Kleinberg ◽  
R. A. Shore

A significant portion of the study of large cardinals in set theory centers around the concept of “partition relation”. To best capture the basic idea here, we introduce the following notation: for x and y sets, κ an infinite cardinal, and γ an ordinal less than κ, we let [x]γ denote the collection of subsets of x of order-type γ and abbreviate with the partition relation for each function F frominto y there exists a subset C of κ of cardinality κ such that (such that for each α < γ) the range of F on [С]γ ([С]α) has cardinality 1. Now although each infinite cardinal κ satisfies the relation for each n and m in ω (F. P. Ramsey [8]), a connection with large cardinals arises when one asks, “For which uncountable κ do we have κ → (κ)2?” Indeed, any uncountable cardinal κ which satisfies κ → (κ)2 is strongly inaccessible and weakly compact (see [9]). As another example one can look at the improvements of Scott's original result to the effect that if there exists a measurable cardinal then there exists a nonconstructible set. Indeed, if κ is a measurable cardinal then κ → (κ)< ω, and as Solovay [11] has shown, if there exists a cardinal κ such that κ → (κ)< ω3 (κ → (ℵ1)< ω, even) then there exists a nonconstructible set of integers.


1980 ◽  
Vol 45 (3) ◽  
pp. 623-628 ◽  
Author(s):  
Mitchell Spector

The usefulness of measurable cardinals in set theory arises in good part from the fact that an ultraproduct of wellfounded structures by a countably complete ultrafilter is wellfounded. In the standard proof of the wellfoundedness of such an ultraproduct, one first shows, without any use of the axiom of choice, that the ultraproduct contains no infinite descending chains. One then completes the proof by noting that, assuming the axiom of choice, any partial ordering with no infinite descending chain is wellfounded. In fact, the axiom of dependent choices (a weakened form of the axiom of choice) suffices. It is therefore of interest to ask whether some use of the axiom of choice is needed in order to prove the wellfoundedness of such ultraproducts or whether, on the other hand, their wellfoundedness can be proved in ZF alone. In Theorem 1, we show that the axiom of choice is needed for the proof (assuming the consistency of a strong partition relation). Theorem 1 also contains some related consistency results concerning infinite exponent partition relations. We then use Theorem 1 to show how to change the cofinality of a cardinal κ satisfying certain partition relations to any regular cardinal less than κ, while introducing no new bounded subsets of κ. This generalizes a theorem of Prikry [5].


1981 ◽  
Vol 46 (4) ◽  
pp. 822-842 ◽  
Author(s):  
Howard Becker

Since the discovery of forcing in the early sixties, it has been clear that many natural and interesting mathematical questions are not decidable from the classical axioms of set theory, ZFC. Therefore some mathematicians have been studying the consequences of stronger set theoretic assumptions. Two new types of axioms that have been the subject of much research are large cardinal axioms and axioms asserting the determinacy of definable games. The two appear at first glance to be unrelated; one of the most surprising discoveries of recent research is that this is not the case.In this paper we will be assuming the axiom of determinacy (AD) plus the axiom of dependent choice (DC). AD is false, since it contradicts the axiom of choice. However every set in L[R] is ordinal definable from a real. Our axiom that definable games are determined implies that every game in L[R] is determined (in V), and since a strategy is a real, it is determined in L[R]. That is, L[R] ⊨ AD. The axiom of choice implies L[R] ⊨ DC. So by embedding ourselves in L[R], we can assume AD + DC and begin proving theorems. These theorems true in L[R] imply corresponding theorems in V, by e.g. changing “every set” to “every set in L[R]”. For more information on AD as an axiom, and on some of the points touched on here, the reader should consult [14], particularly §§7D and 8I. In this paper L[R] will no longer even be mentioned. We just assume AD for the rest of the paper.


1982 ◽  
Vol 47 (1) ◽  
pp. 161-168 ◽  
Author(s):  
E. M. Kleinberg

There are two main axiomatic extensions of Zermelo-Fraenkel set theory without the axiom of choice, that associated with the axiom of determinateness, and that associated with infinite exponent partition relations. Initially, the axiom of determinateness, henceforth AD, was the sole tool available. Using it, set theorists in the late 1960s produced many remarkable results in pure set theory (e.g. the measurability of ℵ1) as well as in projective set theory (e.g. reduction principles for ). Infinite exponent partition relations were first studied successfully soon after these early consequences of AD. They too produced measurable cardinals and not only were the constructions here easier than those from AD—the results gave a far clearer picture of the measures involved than had been offered by AD. In general, the techniques offered by infinite exponent partition relations became so attractive that a great deal of the subsequent work from AD involved an initial derivation from AD of the appropriate infinite exponent partition relation and then the derivation from the partition relation of the desired result.Since the early 1970s work on choiceless extensions of ZF + DC has split mainly between AD and its applications to projective set theory, and infinite exponent partition relations and their applications to pure set theory. There has certainly been a fair amount of interplay between the two, but for the most part the theories have been pursued independently.Unlike AD, infinite exponent partition relations have shown themselves amenable to nontrivial forcing arguments. For example, Spector has constructed models for interesting partition relations, consequences of AD, in which AD is false. Thus AD is a strictly stronger assumption than are various infinite exponent partition relations. Furthermore, Woodin has recently proved the consistency of infinite exponent partition relations relative to assumptions consistent with the axiom of choice, in particular, relative to the existence of a supercompact cardinal. The notion of doing this for AD is not even considered.


1973 ◽  
Vol 38 (2) ◽  
pp. 299-308 ◽  
Author(s):  
E. M. Kleinberg ◽  
J. I. Seiferas

The study of partition relations for cardinal numbers introduced by Erdös and his school in the 1950's has, for the past several years, had a profound impact in logic. Unfortunately, quite early in their development, it was noticed by Rado [1] that the potentially most fruitful class of such relations, infinite exponent partition relations, were always in contradiction with the axiom of choice (AC). As a result, such relations were overlooked. This turned out to be a mistake; for, as has been noticed recently, a close study of infinite exponent partition relations is both interesting and rewarding. For example, there are weakened versions of such relations which are provable in ZF and which have valuable applications in recursion theory and set theory. In addition, the pure theory of these relations, like that of the axiom of determinateness, is fruitful as well as elegant. For more background here one should refer to [3].At any rate, with a more detailed look at infinite exponent partition relations came a more refined version of Rado's original theorem. Specifically, Rado used the full axiom of choice to carefully construct partitions to violate any desired relation—a more sophisticated look at the actual theory of such relations indicated how one could put together some desired partitions using only well-ordered choice [3].The distinction between well-ordered choice and full choice is by no means vacuous in this context. For Mathias has shown [4] that the simplest infinite exponent partition relation, ω → (ω)ω, is consistent with countable choice (well-ordered choice of length ℵ0) and, in fact, is consistent with dependent choice.


2019 ◽  
Vol 27 (5) ◽  
pp. 746-765
Author(s):  
Eman Dihoum ◽  
Michael Rathjen

AbstractEspecially nice models of intuitionistic set theories are realizability models $V({\mathcal A})$, where $\mathcal A$ is an applicative structure or partial combinatory algebra. This paper is concerned with the preservation of various choice principles in $V({\mathcal A})$ if assumed in the underlying universe $V$, adopting Constructive Zermelo–Fraenkel as background theory for all of these investigations. Examples of choice principles are the axiom schemes of countable choice, dependent choice, relativized dependent choice and the presentation axiom. It is shown that any of these axioms holds in $V(\mathcal{A})$ for every applicative structure $\mathcal A$ if it holds in the background universe.1 It is also shown that a weak form of the countable axiom of choice, $\textbf{AC}^{\boldsymbol{\omega , \omega }}$, is rendered true in any $V(\mathcal{A})$ regardless of whether it holds in the background universe. The paper extends work by McCarty (1984, Realizability and Recursive Mathematics, PhD Thesis) and Rathjen (2006, Realizability for constructive Zermelo–Fraenkel set theory. In Logic Colloquium 03, pp. 282–314).


1995 ◽  
Vol 1 (3) ◽  
pp. 327-339 ◽  
Author(s):  
Itay Neeman

In this paper I shall present a method for proving determinacy from large cardinals which, in many cases, seems to yield optimal results. One of the main applications extends theorems of Martin, Steel and Woodin about determinacy within the projective hierarchy. The method can also be used to give a new proof of Woodin's theorem about determinacy in L(ℝ).The reason we look for optimal determinacy proofs is not only vanity. Such proofs serve to tighten the connection between large cardinals and descriptive set theory, letting us bring our knowledge of one subject to bear on the other, and thus increasing our understanding of both. A classic example of this is the Harrington-Martin proof that -determinacy implies -determinacy. This is an example of a transfer theorem, which assumes a certain determinacy hypothesis and proves a stronger one. While the statement of the theorem makes no mention of large cardinals, its proof goes through 0#, first proving that-determinacy ⇒ 0# exists,and then that0# exists ⇒ -determinacyMore recent examples of the connection between large cardinals and descriptive set theory include Steel's proof thatADL(ℝ) ⇒ HODL(ℝ) ⊨ GCH,see [9], and several results of Woodin about models of AD+, a strengthening of the axiom of determinacy AD which Woodin has introduced. These proofs not only use large cardinals, but also reveal a deep, structural connection between descriptive set theoretic notions and notions related to large cardinals.


1986 ◽  
Vol 51 (1) ◽  
pp. 33-38
Author(s):  
Mitchell Spector

The concept of "partition relation" has proven to be extremely important in the development of the theory of large cardinals. This is due in good part to the fact that the ordinal numbers which appear as parameters in partition relations provide a natural way to define a detailed hierarchy of the corresponding large cardinal axioms. In particular, the study of cardinals satisfying Ramsey-Erdös-style partition relations has yielded a great number of very interesting large cardinal axioms which lie in strength strictly between inaccessibility and measurability. It is the purpose of this paper to show that this phenomenon does not occur if we use infinite exponent partition relations; no such partition relation has consistency strength strictly between inaccessibility and measurability. We also give a complete determination of which infinite exponent partition relations hold, assuming that there is no inner model of set theory with a measurable cardinal.Our notation is standard. If F is a function and x is a set, then F″x denotes the range of F on x. If X is a set of ordinals and α is an ordinal, then [X]α is the collection of all subsets of X of order type α. We identify a member of [X]α with a strictly increasing function from α to X. If p ∈ [X]α and q ∈ [α]β, then the composition of p with q, which we denote pq, is a member of [X]β.


1976 ◽  
Vol 41 (2) ◽  
pp. 481-482 ◽  
Author(s):  
J. E. Baumgartner ◽  
L. A. Harrington ◽  
E. M. Kleinberg

The extreme interest of set theorists in the notion of “closed unbounded set” is epitomized in the following well-known theorem:Theorem A. For any regular cardinal κ > ω, the intersection of any two closed unbounded subsets of κ is closed and unbounded.The proof of this theorem is easy and in fact yields a stronger result, namely that for any uncountable regular cardinal κ the intersection of fewer than κ many closed unbounded sets is closed and unbounded. Thus, if, for κ a regular uncountable cardinal, we let denote {A ⊆ κ ∣ A contains a closed unbounded subset}, then, for any such κ, is a κ-additive nonprincipal filter on κ.Now what about the possibility of being an ultrafilterκ It is routine to see that this is impossible for κ > ℵ1. However, for κ = ℵ1 the situation is different. If were an ultrafilter, ℵ1 would be a measurable cardinal. As is well-known this is impossible if we assume the axiom of choice; however if ZF + “there exists a measurable cardinal” is consistent, then so is ZF + “ℵ1 is a measurable cardinal” [2]. Furthermore, under the assumption of certain set theoretic axioms (such as the axiom of determinateness or various infinite exponent partition relations) can be proven to be an ultrafilter. (See [3] and [5].)


1969 ◽  
Vol 34 (2) ◽  
pp. 205-206 ◽  
Author(s):  
E. M. Kleinberg

In [3] F. P. Ramsey proved as a theorem of Zermelo-Fraenkel set theory (ZF) with the Axiom of Choice (AC) the following result:(1) Theorem. Let A be an infinite class. For each integer n and partition {X, Y} of the size n subsets of A, there exists an infinite subclass of A all of whose size n subsets are contained in only one of X or Y.


Sign in / Sign up

Export Citation Format

Share Document