measurable cardinal
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 1)

H-INDEX

11
(FIVE YEARS 0)

2021 ◽  
pp. 1-15
Author(s):  
G. BEZHANISHVILI ◽  
N. BEZHANISHVILI ◽  
J. LUCERO-BRYAN ◽  
J. VAN MILL


2020 ◽  
Vol 171 (8) ◽  
pp. 102821
Author(s):  
Moti Gitik
Keyword(s):  


2019 ◽  
Vol 84 (1) ◽  
pp. 178-204
Author(s):  
ARTHUR W. APTER ◽  
JAMES CUMMINGS

AbstractWe study the number of normal measures on a tall cardinal. Our main results are that:•The least tall cardinal may coincide with the least measurable cardinal and carry as many normal measures as desired.•The least measurable limit of tall cardinals may carry as many normal measures as desired.



2017 ◽  
Vol 82 (4) ◽  
pp. 1229-1251
Author(s):  
TREVOR M. WILSON

AbstractWe prove several equivalences and relative consistency results regarding generic absoluteness beyond Woodin’s ${\left( {{\bf{\Sigma }}_1^2} \right)^{{\rm{u}}{{\rm{B}}_\lambda }}}$ generic absoluteness result for a limit of Woodin cardinals λ. In particular, we prove that two-step $\exists ^ℝ \left( {{\rm{\Pi }}_1^2 } \right)^{{\rm{uB}}_\lambda } $ generic absoluteness below a measurable limit of Woodin cardinals has high consistency strength and is equivalent, modulo small forcing, to the existence of trees for ${\left( {{\bf{\Pi }}_1^2} \right)^{{\rm{u}}{{\rm{B}}_\lambda }}}$ formulas. The construction of these trees uses a general method for building an absolute complement for a given tree T assuming many “failures of covering” for the models $L\left( {T,{V_\alpha }} \right)$ for α below a measurable cardinal.



2017 ◽  
Vol 82 (4) ◽  
pp. 1560-1575 ◽  
Author(s):  
NATASHA DOBRINEN ◽  
DAN HATHAWAY

AbstractSeveral variants of the Halpern–Läuchli Theorem for trees of uncountable height are investigated. Forκweakly compact, we prove that the various statements are all equivalent, and hence, the strong tree version holds for one tree on any weakly compact cardinal. For any finited≥ 2, we prove the consistency of the Halpern–Läuchli Theorem ondmany normalκ-trees at a measurable cardinalκ, given the consistency of aκ+d-strong cardinal. This follows from a more general consistency result at measurableκ, which includes the possibility of infinitely many trees, assuming partition relations which hold in models of AD.



2017 ◽  
Vol 82 (3) ◽  
pp. 1106-1131 ◽  
Author(s):  
PHILIPP LÜCKE ◽  
RALF SCHINDLER ◽  
PHILIPP SCHLICHT

AbstractWe study Σ1(ω1)-definable sets (i.e., sets that are equal to the collection of all sets satisfying a certain Σ1-formula with parameter ω1 ) in the presence of large cardinals. Our results show that the existence of a Woodin cardinal and a measurable cardinal above it imply that no well-ordering of the reals is Σ1(ω1)-definable, the set of all stationary subsets of ω1 is not Σ1(ω1)-definable and the complement of every Σ1(ω1)-definable Bernstein subset of ${}_{}^{{\omega _1}}\omega _1^{}$ is not Σ1(ω1)-definable. In contrast, we show that the existence of a Woodin cardinal is compatible with the existence of a Σ1(ω1)-definable well-ordering of H(ω2) and the existence of a Δ1(ω1)-definable Bernstein subset of ${}_{}^{{\omega _1}}\omega _1^{}$. We also show that, if there are infinitely many Woodin cardinals and a measurable cardinal above them, then there is no Σ1(ω1)-definable uniformization of the club filter on ω1. Moreover, we prove a perfect set theorem for Σ1(ω1)-definable subsets of ${}_{}^{{\omega _1}}\omega _1^{}$, assuming that there is a measurable cardinal and the nonstationary ideal on ω1 is saturated. The proofs of these results use iterated generic ultrapowers and Woodin’s ℙmax-forcing. Finally, we also prove variants of some of these results for Σ1(κ)-definable subsets of κκ, in the case where κ itself has certain large cardinal properties.



2015 ◽  
Vol 80 (1) ◽  
pp. 251-284
Author(s):  
SY-DAVID FRIEDMAN ◽  
PETER HOLY ◽  
PHILIPP LÜCKE

AbstractThis paper deals with the question whether the assumption that for every inaccessible cardinal κ there is a well-order of H(κ+) definable over the structure $\langle {\rm{H}}({\kappa ^ + }), \in \rangle$ by a formula without parameters is consistent with the existence of (large) large cardinals and failures of the GCH. We work under the assumption that the SCH holds at every singular fixed point of the ℶ-function and construct a class forcing that adds such a well-order at every inaccessible cardinal and preserves ZFC, all cofinalities, the continuum function, and all supercompact cardinals. Even in the absence of a proper class of inaccessible cardinals, this forcing produces a model of “V = HOD” and can therefore be used to force this axiom while preserving large cardinals and failures of the GCH. As another application, we show that we can start with a model containing an ω-superstrong cardinal κ and use this forcing to build a model in which κ is still ω-superstrong, the GCH fails at κ and there is a well-order of H(κ+) that is definable over H(κ+) without parameters. Finally, we can apply the forcing to answer a question about the definable failure of the GCH at a measurable cardinal.



2014 ◽  
Vol 60 (6) ◽  
pp. 471-486 ◽  
Author(s):  
Arthur W. Apter ◽  
Ioanna M. Dimitriou ◽  
Peter Koepke


2014 ◽  
Vol 79 (01) ◽  
pp. 103-134 ◽  
Author(s):  
M. MALLIARIS ◽  
S. SHELAH

Abstract Our results in this paper increase the model-theoretic precision of a widely used method for building ultrafilters, and so advance the general problem of constructing ultrafilters whose ultrapowers have a precise degree of saturation. We begin by showing that any flexible regular ultrafilter makes the product of an unbounded sequence of finite cardinals large, thus saturating any stable theory. We then prove directly that a “bottleneck” in the inductive construction of a regular ultrafilter on λ (i.e., a point after which all antichains of ${\cal P}\left( \lambda \right)/{\cal D}$ have cardinality less than λ) essentially prevents any subsequent ultrafilter from being flexible, thus from saturating any nonlow theory. The constructions are as follows. First, we construct a regular filter ${\cal D}$ on λ so that any ultrafilter extending ${\cal D}$ fails to ${\lambda ^ + }$ -saturate ultrapowers of the random graph, thus of any unstable theory. The proof constructs the omitted random graph type directly. Second, assuming existence of a measurable cardinal κ, we construct a regular ultrafilter on $\lambda > \kappa$ which is λ-flexible but not ${\kappa ^{ + + }}$ -good, improving our previous answer to a question raised in Dow (1985). Third, assuming a weakly compact cardinal κ, we construct an ultrafilter to show that ${\rm{lcf}}\left( {{\aleph _0}} \right)$ may be small while all symmetric cuts of cofinality κ are realized. Thus certain families of precuts may be realized while still failing to saturate any unstable theory.



2014 ◽  
Vol 79 (01) ◽  
pp. 266-278 ◽  
Author(s):  
JOAN BAGARIA ◽  
MENACHEM MAGIDOR

Abstract An uncountable cardinal κ is called ${\omega _1}$ -strongly compact if every κ-complete ultrafilter on any set I can be extended to an ${\omega _1}$ -complete ultrafilter on I. We show that the first ${\omega _1}$ -strongly compact cardinal, ${\kappa _0}$ , cannot be a successor cardinal, and that its cofinality is at least the first measurable cardinal. We prove that the Singular Cardinal Hypothesis holds above ${\kappa _0}$ . We show that the product of Lindelöf spaces is κ-Lindelöf if and only if $\kappa \ge {\kappa _0}$ . Finally, we characterize ${\kappa _0}$ in terms of second order reflection for relational structures and we give some applications. For instance, we show that every first-countable nonmetrizable space has a nonmetrizable subspace of size less than ${\kappa _0}$ .



Sign in / Sign up

Export Citation Format

Share Document