scholarly journals Preservation of choice principles under realizability

2019 ◽  
Vol 27 (5) ◽  
pp. 746-765
Author(s):  
Eman Dihoum ◽  
Michael Rathjen

AbstractEspecially nice models of intuitionistic set theories are realizability models $V({\mathcal A})$, where $\mathcal A$ is an applicative structure or partial combinatory algebra. This paper is concerned with the preservation of various choice principles in $V({\mathcal A})$ if assumed in the underlying universe $V$, adopting Constructive Zermelo–Fraenkel as background theory for all of these investigations. Examples of choice principles are the axiom schemes of countable choice, dependent choice, relativized dependent choice and the presentation axiom. It is shown that any of these axioms holds in $V(\mathcal{A})$ for every applicative structure $\mathcal A$ if it holds in the background universe.1 It is also shown that a weak form of the countable axiom of choice, $\textbf{AC}^{\boldsymbol{\omega , \omega }}$, is rendered true in any $V(\mathcal{A})$ regardless of whether it holds in the background universe. The paper extends work by McCarty (1984, Realizability and Recursive Mathematics, PhD Thesis) and Rathjen (2006, Realizability for constructive Zermelo–Fraenkel set theory. In Logic Colloquium 03, pp. 282–314).

1977 ◽  
Vol 42 (4) ◽  
pp. 523-526 ◽  
Author(s):  
J. M. Henle

Beginning with Ramsey's theorem of 1930, combinatorists have been intrigued with the notion of large cardinals satisfying partition relations. Years of research have established the smaller ones, weakly ineffable, Erdös, Jonsson, Rowbottom and Ramsey cardinals to be among the most interesting and important large cardinals in set theory. Recently, cardinals satisfying more powerful infinite-exponent partition relations have been examined with growing interest. This is due not only to their inherent qualities and the fact that they imply the existence of other large cardinals (Kleinberg [2], [3]), but also to the fact that the Axiom of Determinacy (AD) implies the existence of great numbers of such cardinals (Martin [5]).That these properties are more often than not inconsistent with the full Axiom of Choice (Kleinberg [4]) somewhat increases their charm, for the theorems concerning them tend to be a little odd, and their proofs, circumforaneous. The properties are, as far as anyone knows, however, consistent with Dependent Choice (DC).Our basic theorem will be the following: If k > ω and k satisfies k→(k)k then the least cardinal δ such that has a δ-additive, uniform ultrafilter. In addition, if ACω is assumed, we will show that δ is greater than ω, and hence a measurable cardinal. This result will be strengthened somewhat when we prove that for any k, δ, if then .


1977 ◽  
Vol 42 (2) ◽  
pp. 179-190 ◽  
Author(s):  
David Pincus ◽  
Robert M. Solovay

Nonprincipal ultrafilters are harder to define in ZFC, and harder to obtain in ZF + DC, than nonprincipal measures.The function μ from P(X) to the closed interval [0, 1] is a measure on X if μ. is finitely additive on disjoint sets and μ(X) = 1. (P is the power set.) μ is nonprincipal if μ ({x}) = 0 for each x Є X. μ is an ultrafilter if Range μ= {0, 1}. The existence of nonprincipal measures and ultrafilters on any infinite X follows from the axiom of choice.Nonprincipal measures cannot necessarily be defined in ZFC. (ZF is Zermelo–Fraenkel set theory. ZFC is ZF with choice.) In ZF alone they cannot even be proved to exist. This was first established by Solovay [14] using an inaccessible cardinal. In the model of [14] no nonprincipal measure on ω is even ODR (definable from ordinal and real parameters). The HODR (hereditarily ODR) sets of this model form a model of ZF + DC (dependent choice) in which no nonprincipal measure on ω exists. Pincus [8] gave a model with the same properties making no use of an inaccessible. (This model was also known to Solovay.) The second model can be combined with ideas of A. Blass [1] to give a model of ZF + DC in which no nonprincipal measures exist on any set. Using this model one obtains a model of ZFC in which no nonprincipal measure on the set of real numbers is ODR. H. Friedman, in private communication, previously obtained such a model of ZFC by a different method. Our construction will be sketched in 4.1.


1976 ◽  
Vol 79 (2) ◽  
pp. 289-297 ◽  
Author(s):  
Wilfrid Hodges

H. Läuchli (9) constructed, within a model of a weak form of set theory, an algebraic closure L of the field Q of rationals which had no real-closed subfield. Läuchli's construction is easily transferred to a model N of ZF (= Zermelo–Fraenkel set theory without the axiom of Choice), and it follows at once that neither of the two following statements is provable from ZF alone:Every algebraic closure of Q has a real-closed subfield. (1)There is, up to isomorphism, at most one algebraic closure of Q. (2)


1956 ◽  
Vol 21 (4) ◽  
pp. 350-366 ◽  
Author(s):  
Elliott Mendelson

1. The purpose of this paper is to show that, if the axioms of a system G of set theory are consistent, then it is impossible to prove from them the following weak form of the axiom of choice: (H1) For every denumerable set x of disjoint two-element sets, there is a set y, called a choice set for x, which contains exactly one element in common with each element of x. Among the axioms of the system G, we take, with minor modifications, Axioms A, B, C of Gödel [6]. Clearly, the independence of H1 implies that of all stronger propositions, including the general axiom of choice and the generalized continuum hypothesis.The proof depends upon ideas of Fraenkel and Mostowski, and proceeds in the following manner. Let a be a denumerable set of objects Δ0, Δ1, Δ2, …, the exact nature of which will be specified later. Let μj = {Δ2j, Δ2j+1} for each j, c = {μ0, μ1, μ2, …}, and b = [the sum set of a]. By transfinite induction, construct the class Vc which is the closure of b under the power-set operation. For each j, it is possible to define a 1–1 mapping of Vc onto itself with the following properties. The mapping preserves the ε-relation, or, more precisely, .


1981 ◽  
Vol 46 (4) ◽  
pp. 822-842 ◽  
Author(s):  
Howard Becker

Since the discovery of forcing in the early sixties, it has been clear that many natural and interesting mathematical questions are not decidable from the classical axioms of set theory, ZFC. Therefore some mathematicians have been studying the consequences of stronger set theoretic assumptions. Two new types of axioms that have been the subject of much research are large cardinal axioms and axioms asserting the determinacy of definable games. The two appear at first glance to be unrelated; one of the most surprising discoveries of recent research is that this is not the case.In this paper we will be assuming the axiom of determinacy (AD) plus the axiom of dependent choice (DC). AD is false, since it contradicts the axiom of choice. However every set in L[R] is ordinal definable from a real. Our axiom that definable games are determined implies that every game in L[R] is determined (in V), and since a strategy is a real, it is determined in L[R]. That is, L[R] ⊨ AD. The axiom of choice implies L[R] ⊨ DC. So by embedding ourselves in L[R], we can assume AD + DC and begin proving theorems. These theorems true in L[R] imply corresponding theorems in V, by e.g. changing “every set” to “every set in L[R]”. For more information on AD as an axiom, and on some of the points touched on here, the reader should consult [14], particularly §§7D and 8I. In this paper L[R] will no longer even be mentioned. We just assume AD for the rest of the paper.


2021 ◽  
Vol Volume 17, Issue 3 ◽  
Author(s):  
Jean-Louis Krivine

The theory of classical realizability is a framework for the Curry-Howard correspondence which enables to associate a program with each proof in Zermelo-Fraenkel set theory. But, almost all the applications of mathematics in physics, probability, statistics, etc. use Analysis i.e. the axiom of dependent choice (DC) or even the (full) axiom of choice (AC). It is therefore important to find explicit programs for these axioms. Various solutions have been found for DC, for instance the lambda-term called "bar recursion" or the instruction "quote" of LISP. We present here the first program for AC.


2010 ◽  
Vol 75 (1) ◽  
pp. 255-268 ◽  
Author(s):  
Marianne Morillon

AbstractWe work in set-theory without choice ZF. A set is countable if it is finite or equipotent with ℕ. Given a closed subset F of [0, 1]I which is a bounded subset of ℓ1(I) (resp. such that F ⊆ c0(I)), we show that the countable axiom of choice for finite sets, (resp. the countable axiom of choice ACℕ) implies that F is compact. This enhances previous results where ACℕ (resp. the axiom of Dependent Choices) was required. If I is linearly orderable (for example I = ℝ), then, in ZF, the closed unit ball of the Hilbert space ℓ2 (I) is (Loeb-)compact in the weak topology. However, the weak compactness of the closed unit ball of is not provable in ZF.


1974 ◽  
Vol 39 (3) ◽  
pp. 579-583 ◽  
Author(s):  
Paul E. Cohen

Suppose M is a countable standard transitive model of set theory. P. J. Cohen [2] showed that if κ is an infinite cardinal of M then there is a one-to-one function Fκ from κ into the set of real numbers such that M[Fκ] is a model of set theory with the same cardinals as M.If Tκ is the range of Fκ then Cohen also showed [2] that M[Tκ] fails to satisfy the axiom of choice. We will give an easy proof of this fact.If κ, λ are infinite we will also show that M[Tκ] is elementarily equivalent to M[Tλ] and that (] in M[Fλ]) is elementarily equivalent to (] in M[FK]).Finally we show that there may be an N ∈ M[GK] which is a standard model of set theory (without the axiom of choice) and which has, from the viewpoint of M[GK], more real numbers than ordinals.We write ZFC and ZF for Zermelo-Fraenkel set theory, respectively with and without the axiom of choice (AC). GBC is Gödel-Bernays' set theory with AC. DC and ACℵo are respectively the axioms of dependent choice and of countable choice defined in [6].Lower case Greek characters (other than ω) are used as variables over ordinals. When α is an ordinal, R(α) is the set of all sets with rank less than α.


Author(s):  
Alexander R. Pruss

This is a mainly technical chapter concerning the causal embodiment of the Axiom of Choice from set theory. The Axiom of Choice powered a construction of an infinite fair lottery in Chapter 4 and a die-rolling strategy in Chapter 5. For those applications to work, there has to be a causally implementable (though perhaps not compatible with our laws of nature) way to implement the Axiom of Choice—and, for our purposes, it is ideal if that involves infinite causal histories, so the causal finitist can reject it. Such a construction is offered. Moreover, other paradoxes involving the Axiom of Choice are given, including two Dutch Book paradoxes connected with the Banach–Tarski paradox. Again, all this is argued to provide evidence for causal finitism.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 179
Author(s):  
Ari Herman ◽  
John Caughman

In this paper, we show that Zermelo–Fraenkel set theory with Choice (ZFC) conflicts with basic intuitions about randomness. Our background assumptions are the Zermelo–Fraenekel axioms without Choice (ZF) together with a fragment of Kolmogorov’s probability theory. Using these minimal assumptions, we prove that a weak form of Choice contradicts two common sense assumptions about probability—both based on simple notions of symmetry and independence.


Sign in / Sign up

Export Citation Format

Share Document