A Zero-Free Interval for Chromatic Polynomials of Graphs

1993 ◽  
Vol 2 (3) ◽  
pp. 325-336 ◽  
Author(s):  
Bill Jackson

LetGbe a graph andP(G, t) be the chromatic polynomial ofG. It is known thatP(G, t) has no zeros in the intervals (−∞, 0) and (0, 1). We shall show thatP(G, t) has no zeros in (1, 32/27]. In addition, we shall construct graphs whose chromatic polynomials have zeros arbitrarily close to 32/27.

1992 ◽  
Vol 101 (1-3) ◽  
pp. 333-341 ◽  
Author(s):  
D.R. Woodall

2018 ◽  
Vol 27 (6) ◽  
pp. 988-998 ◽  
Author(s):  
THOMAS J. PERRETT ◽  
CARSTEN THOMASSEN

We prove that the roots of the chromatic polynomials of planar graphs are dense in the interval between 32/27 and 4, except possibly in a small interval around τ + 2 where τ is the golden ratio. This interval arises due to a classical result of Tutte, which states that the chromatic polynomial of every planar graph takes a positive value at τ + 2. Our results lead us to conjecture that τ + 2 is the only such number less than 4.


2008 ◽  
Vol 17 (2) ◽  
pp. 225-238 ◽  
Author(s):  
ROBERTO FERNÁNDEZ ◽  
ALDO PROCACCI

We prove that the chromatic polynomial$P_\mathbb{G}(q)$of a finite graph$\mathbb{G}$of maximal degree Δ is free of zeros for |q| ≥C*(Δ) withThis improves results by Sokal and Borgs. Furthermore, we present a strengthening of this condition for graphs with no triangle-free vertices.


2008 ◽  
Vol 17 (6) ◽  
pp. 749-759 ◽  
Author(s):  
F. M. DONG ◽  
K. M. KOH

Sokal in 2001 proved that the complex zeros of the chromatic polynomialPG(q) of any graphGlie in the disc |q| < 7.963907Δ, where Δ is the maximum degree ofG. This result answered a question posed by Brenti, Royle and Wagner in 1994 and hence proved a conjecture proposed by Biggs, Damerell and Sands in 1972. Borgs gave a short proof of Sokal's result. Fernández and Procacci recently improved Sokal's result to |q| < 6.91Δ. In this paper, we shall show that all real zeros ofPG(q) are in the interval [0,5.664Δ). For the special case that Δ = 3, all real zeros ofPG(q) are in the interval [0,4.765Δ).


2015 ◽  
Vol 07 (03) ◽  
pp. 1550035
Author(s):  
Anjaly Kishore ◽  
M. S. Sunitha

The injective chromatic number χi(G) [G. Hahn, J. Kratochvil, J. Siran and D. Sotteau, On the injective chromatic number of graphs, Discrete Math. 256(1–2) (2002) 179–192] of a graph G is the minimum number of colors needed to color the vertices of G such that two vertices with a common neighbor are assigned distinct colors. The nature of the coefficients of injective chromatic polynomials of complete graphs, wheel graphs and cycles is studied. Injective chromatic polynomial on operations like union, join, product and corona of graphs is obtained.


2012 ◽  
Vol 15 ◽  
pp. 281-307 ◽  
Author(s):  
Kerri Morgan

AbstractThe chromatic polynomialP(G,λ) gives the number of ways a graphGcan be properly coloured in at mostλcolours. This polynomial has been extensively studied in both combinatorics and statistical physics, but there has been little work on its algebraic properties. This paper reports a systematic study of the Galois groups of chromatic polynomials. We give a summary of the Galois groups of all chromatic polynomials of strongly non-clique-separable graphs of order at most 10 and all chromatic polynomials of non-clique-separableθ-graphs of order at most 19. Most of these chromatic polynomials have symmetric Galois groups. We give five infinite families of graphs: one of these families has chromatic polynomials with a dihedral Galois group and two of these families have chromatic polynomials with cyclic Galois groups. This includes the first known infinite family of graphs that have chromatic polynomials with the cyclic Galois group of order 3.


10.37236/164 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Kerri Morgan ◽  
Graham Farr

The chromatic polynomial $P(G,\lambda)$ gives the number of $\lambda$-colourings of a graph. If $P(G,\lambda)=P(H_{1},\lambda)P(H_{2},\lambda)/P(K_{r},\lambda)$, then the graph $G$ is said to have a chromatic factorisation with chromatic factors $H_{1}$ and $H_{2}$. It is known that the chromatic polynomial of any clique-separable graph has a chromatic factorisation. In this paper we construct an infinite family of graphs that have chromatic factorisations, but have chromatic polynomials that are not the chromatic polynomial of any clique-separable graph. A certificate of factorisation, that is, a sequence of rewritings based on identities for the chromatic polynomial, is given that explains the chromatic factorisations of graphs from this family. We show that the graphs in this infinite family are the only graphs that have a chromatic factorisation satisfying this certificate and having the odd cycle $C_{2n+1}$, $n\geq2$, as a chromatic factor.


Sign in / Sign up

Export Citation Format

Share Document