On injective chromatic polynomials of graphs

2015 ◽  
Vol 07 (03) ◽  
pp. 1550035
Author(s):  
Anjaly Kishore ◽  
M. S. Sunitha

The injective chromatic number χi(G) [G. Hahn, J. Kratochvil, J. Siran and D. Sotteau, On the injective chromatic number of graphs, Discrete Math. 256(1–2) (2002) 179–192] of a graph G is the minimum number of colors needed to color the vertices of G such that two vertices with a common neighbor are assigned distinct colors. The nature of the coefficients of injective chromatic polynomials of complete graphs, wheel graphs and cycles is studied. Injective chromatic polynomial on operations like union, join, product and corona of graphs is obtained.

2020 ◽  
Vol 16 (3) ◽  
pp. 297-299
Author(s):  
Athirah Zulkarnain ◽  
Nor Haniza Sarmin ◽  
Hazzirah Izzati Mat Hassim

A graph is formed by a pair of vertices and edges. It can be related to groups by using the groups’ properties for its vertices and edges. The set of vertices of the graph comprises the elements or sets from the group while the set of edges of the graph is the properties and condition for the graph. A conjugacy class of an element  is the set of elements that are conjugated with . Any element of a group , labelled as , is conjugated to  if it satisfies  for some elements  in  with its inverse . A conjugacy class graph of a group   is defined when its vertex set is the set of non-central conjugacy classes of  . Two distinct vertices   and   are connected by an edge if and only if their cardinalities are not co-prime, which means that the order of the conjugacy classes of  and  have common factors. Meanwhile, a simple graph is the graph that contains no loop and no multiple edges. A complete graph is a simple graph in which every pair of distinct vertices is adjacent. Moreover, a  -group is the group with prime power order. In this paper, the conjugacy class graphs for some non-abelian 3-groups are determined by using the group’s presentations and the definition of conjugacy class graph. There are two classifications of the non-abelian 3-groups which are used in this research. In addition, some properties of the conjugacy class graph such as the chromatic number, the dominating number, and the diameter are computed. A chromatic number is the minimum number of vertices that have the same colours where the adjacent vertices have distinct colours. Besides, a dominating number is the minimum number of vertices that is required to connect all the vertices while a diameter is the longest path between any two vertices. As a result of this research, the conjugacy class graphs of these groups are found to be complete graphs with chromatic number, dominating number and diameter that are equal to eight, one and one, respectively.


Author(s):  
Fairouz Beggas ◽  
Hamamache Kheddouci ◽  
Walid Marweni

In this paper, we introduce and study a new coloring problem of graphs called the double total dominator coloring. A double total dominator coloring of a graph [Formula: see text] with minimum degree at least 2 is a proper vertex coloring of [Formula: see text] such that each vertex has to dominate at least two color classes. The minimum number of colors among all double total dominator coloring of [Formula: see text] is called the double total dominator chromatic number, denoted by [Formula: see text]. Therefore, we establish the close relationship between the double total dominator chromatic number [Formula: see text] and the double total domination number [Formula: see text]. We prove the NP-completeness of the problem. We also examine the effects on [Formula: see text] when [Formula: see text] is modified by some operations. Finally, we discuss the [Formula: see text] number of square of trees by giving some bounds.


2014 ◽  
Vol 24 (4) ◽  
pp. 658-679 ◽  
Author(s):  
JÓZSEF BALOGH ◽  
PING HU ◽  
BERNARD LIDICKÝ ◽  
OLEG PIKHURKO ◽  
BALÁZS UDVARI ◽  
...  

We show that for every sufficiently largen, the number of monotone subsequences of length four in a permutation onnpoints is at least\begin{equation*} \binom{\lfloor{n/3}\rfloor}{4} + \binom{\lfloor{(n+1)/3}\rfloor}{4} + \binom{\lfloor{(n+2)/3}\rfloor}{4}. \end{equation*}Furthermore, we characterize all permutations on [n] that attain this lower bound. The proof uses the flag algebra framework together with some additional stability arguments. This problem is equivalent to some specific type of edge colourings of complete graphs with two colours, where the number of monochromaticK4is minimized. We show that all the extremal colourings must contain monochromaticK4only in one of the two colours. This translates back to permutations, where all the monotone subsequences of length four are all either increasing, or decreasing only.


1969 ◽  
Vol 21 ◽  
pp. 992-1000 ◽  
Author(s):  
L. W. Beineke

Although the problem of finding the minimum number of planar graphs into which the complete graph can be decomposed remains partially unsolved, the corresponding problem can be solved for certain other surfaces. For three, the torus, the double-torus, and the projective plane, a single proof will be given to provide the solutions. The same questions will also be answered for bicomplete graphs.


2007 ◽  
Vol Vol. 9 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Olivier Togni

Graphs and Algorithms International audience The strong chromatic index of a graph is the minimum number of colours needed to colour the edges in such a way that each colour class is an induced matching. In this paper, we present bounds for strong chromatic index of three different products of graphs in term of the strong chromatic index of each factor. For the cartesian product of paths, cycles or complete graphs, we derive sharper results. In particular, strong chromatic indices of d-dimensional grids and of some toroidal grids are given along with approximate results on the strong chromatic index of generalized hypercubes.


2020 ◽  
Vol 12 (04) ◽  
pp. 2050035
Author(s):  
Danjun Huang ◽  
Xiaoxiu Zhang ◽  
Weifan Wang ◽  
Stephen Finbow

The adjacent vertex distinguishing edge coloring of a graph [Formula: see text] is a proper edge coloring of [Formula: see text] such that the color sets of any pair of adjacent vertices are distinct. The minimum number of colors required for an adjacent vertex distinguishing edge coloring of [Formula: see text] is denoted by [Formula: see text]. It is observed that [Formula: see text] when [Formula: see text] contains two adjacent vertices of degree [Formula: see text]. In this paper, we prove that if [Formula: see text] is a planar graph without 3-cycles, then [Formula: see text]. Furthermore, we characterize the adjacent vertex distinguishing chromatic index for planar graphs of [Formula: see text] and without 3-cycles. This improves a result from [D. Huang, Z. Miao and W. Wang, Adjacent vertex distinguishing indices of planar graphs without 3-cycles, Discrete Math. 338 (2015) 139–148] that established [Formula: see text] for planar graphs without 3-cycles.


Algorithms ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 161 ◽  
Author(s):  
R. Vignesh ◽  
J. Geetha ◽  
K. Somasundaram

A total coloring of a graph G is an assignment of colors to the elements of the graph G such that no two adjacent or incident elements receive the same color. The total chromatic number of a graph G, denoted by χ ′ ′ ( G ) , is the minimum number of colors that suffice in a total coloring. Behzad and Vizing conjectured that for any graph G, Δ ( G ) + 1 ≤ χ ′ ′ ( G ) ≤ Δ ( G ) + 2 , where Δ ( G ) is the maximum degree of G. In this paper, we prove the total coloring conjecture for certain classes of graphs of deleted lexicographic product, line graph and double graph.


Author(s):  
A. Mohammed Abid ◽  
T. R. Ramesh Rao

A strict strong coloring of a graph [Formula: see text] is a proper coloring of [Formula: see text] in which every vertex of the graph is adjacent to every vertex of some color class. The minimum number of colors required for a strict strong coloring of [Formula: see text] is called the strict strong chromatic number of [Formula: see text] and is denoted by [Formula: see text]. In this paper, we characterize the results on strict strong coloring of Mycielskian graphs and iterated Mycielskian graphs.


Sign in / Sign up

Export Citation Format

Share Document