Improved Bounds for the Ramsey Number of Tight Cycles Versus Cliques

2016 ◽  
Vol 25 (5) ◽  
pp. 791-796
Author(s):  
DHRUV MUBAYI

The 3-uniform tight cycle Cs3 has vertex set ${\mathbb Z}_s$ and edge set {{i, i + 1, i + 2}: i ∈ ${\mathbb Z}_s$}. We prove that for every s ≢ 0 (mod 3) with s ⩾ 16 or s ∈ {8, 11, 14} there is a cs > 0 such that the 3-uniform hypergraph Ramsey number r(Cs3, Kn3) satisfies $$\begin{equation*} r(C_s^3, K_n^3)< 2^{c_s n \log n}.\ \end{equation*}$$ This answers in a strong form a question of the author and Rödl, who asked for an upper bound of the form $2^{n^{1+\epsilon_s}}$ for each fixed s ⩾ 4, where εs → 0 as s → ∞ and n is sufficiently large. The result is nearly tight as the lower bound is known to be exponential in n.

Author(s):  
E. S. Barnes

Letbe n linear forms with real coefficients and determinant Δ = ∥ aij∥ ≠ 0; and denote by M(X) the lower bound of | X1X2 … Xn| over all integer sets (u) ≠ (0). It is well known that γn, the upper bound of M(X)/|Δ| over all sets of forms Xi, is finite, and the value of γn has been determined when n = 2 and n = 3.


1970 ◽  
Vol 22 (3) ◽  
pp. 569-581 ◽  
Author(s):  
S. K. Thomason

In this paper we shall prove that every finite lattice is isomorphic to a sublattice of the degrees of unsolvability, and that every one of a certain class of finite lattices is isomorphic to an initial segment of degrees.Acknowledgment. I am grateful to Ralph McKenzie for his assistance in matters of lattice theory.1. Representation of lattices. The equivalence lattice of the set S consists of all equivalence relations on S, ordered by setting θ ≦ θ’ if for all a and b in S, a θ b ⇒ a θ’ b. The least upper bound and greatest lower bound in are given by the ⋃ and ⋂ operations:


10.37236/257 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Veselin Jungić ◽  
Tomáš Kaiser ◽  
Daniel Král'

We study the mixed Ramsey number $maxR(n,{K_m},{K_r})$, defined as the maximum number of colours in an edge-colouring of the complete graph $K_n$, such that $K_n$ has no monochromatic complete subgraph on $m$ vertices and no rainbow complete subgraph on $r$ vertices. Improving an upper bound of Axenovich and Iverson, we show that $maxR(n,{K_m},{K_4}) \leq n^{3/2}\sqrt{2m}$ for all $m\geq 3$. Further, we discuss a possible way to improve their lower bound on $maxR(n,{K_4},{K_4})$ based on incidence graphs of finite projective planes.


2011 ◽  
Vol 20 (4) ◽  
pp. 519-527 ◽  
Author(s):  
SEBASTIAN M. CIOABĂ ◽  
ANDRÉ KÜNDGEN ◽  
CRAIG M. TIMMONS ◽  
VLADISLAV V. VYSOTSKY

An r-cut of the complete r-uniform hypergraph Krn is obtained by partitioning its vertex set into r parts and taking all edges that meet every part in exactly one vertex. In other words it is the edge set of a spanning complete r-partite subhypergraph of Krn. An r-cut cover is a collection of r-cuts such that each edge of Krn is in at least one of the cuts. While in the graph case r = 2 any 2-cut cover on average covers each edge at least 2-o(1) times, when r is odd we exhibit an r-cut cover in which each edge is covered exactly once. When r is even no such decomposition can exist, but we can bound the average number of times an edge is cut in an r-cut cover between $1+\frac1{r+1}$ and $1+\frac{1+o(1)}{\log r}$. The upper bound construction can be reformulated in terms of a natural polyhedral problem or as a probability problem, and we solve the latter asymptotically.


10.37236/9358 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Maria Axenovich ◽  
Izolda Gorgol

We write $F{\buildrel {\text{ind}} \over \longrightarrow}(H,G)$ for graphs $F, G,$ and $H$, if for any coloring of the edges of $F$ in red and blue, there is either a red induced copy of $H$ or a blue induced copy of $G$. For graphs $G$ and $H$, let $\mathrm{IR}(H,G)$ be the smallest number of vertices in a graph $F$ such that $F{\buildrel {\text{ind}} \over \longrightarrow}(H,G)$. In this note we consider the case when $G$ is a star on $n$ edges, for large $n$ and $H$ is a fixed graph. We prove that  $$ (\chi(H)-1) n \leq \mathrm{IR}(H, K_{1,n}) \leq (\chi(H)-1)^2n + \epsilon n,$$ for any $\epsilon>0$,  sufficiently large $n$, and $\chi(H)$ denoting the chromatic number of $H$. The lower bound is asymptotically tight  for any fixed bipartite $H$. The upper bound is attained up to a constant factor, for example when $H$ is a clique.


10.37236/1521 ◽  
2000 ◽  
Vol 7 (1) ◽  
Author(s):  
Paul J. Tanenbaum

Bound polysemy is the property of any pair $(G_1, G_2)$ of graphs on a shared vertex set $V$ for which there exists a partial order on $V$ such that any pair of vertices has an upper bound precisely when the pair is an edge in $G_1$ and a lower bound precisely when it is an edge in $G_2$. We examine several special cases and prove a characterization of the bound polysemic pairs that illuminates a connection with the squared graphs.


10.37236/8775 ◽  
2020 ◽  
Vol 27 (2) ◽  
Author(s):  
Dániel Gerbner

Given a graph $G$, a hypergraph $\mathcal{H}$ is a Berge copy of $F$ if $V(G)\subset V(\mathcal{H})$ and there is a bijection $f:E(G)\rightarrow E(\mathcal{H})$ such that for any edge $e$ of $G$ we have $e\subset f(e)$. We study Ramsey problems for Berge copies of graphs, i.e. the smallest number of vertices of a complete $r$-uniform hypergraph, such that if we color the hyperedges with $c$ colors, there is a monochromatic Berge copy of $G$. We obtain a couple results regarding these problems. In particular, we determine for which $r$ and $c$ the Ramsey number can be super-linear. We also show a new way to obtain lower bounds, and improve the general lower bounds by a large margin. In the specific case $G=K_n$ and $r=2c-1$, we obtain an upper bound that is sharp besides a constant term, improving earlier results.


10.37236/8085 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Dhruv Rohatgi

For ordered graphs $G$ and $H$, the ordered Ramsey number $r_<(G,H)$ is the smallest $n$ such that every red/blue edge coloring of the complete ordered graph on vertices $\{1,\dots,n\}$ contains either a blue copy of $G$ or a red copy of $H$, where the embedding must preserve the relative order of vertices. One number of interest, first studied by Conlon, Fox, Lee, and Sudakov, is the off-diagonal ordered Ramsey number $r_<(M, K_3)$, where $M$ is an ordered matching on $n$ vertices. In particular, Conlon et al. asked what asymptotic bounds (in $n$) can be obtained for $\max r_<(M, K_3)$, where the maximum is over all ordered matchings $M$ on $n$ vertices. The best-known upper bound is $O(n^2/\log n)$, whereas the best-known lower bound is $\Omega((n/\log n)^{4/3})$, and Conlon et al. hypothesize that there is some fixed $\epsilon > 0$ such that $r_<(M, K_3) = O(n^{2-\epsilon})$ for every ordered matching $M$. We resolve two special cases of this conjecture. We show that the off-diagonal ordered Ramsey numbers for ordered matchings in which edges do not cross are nearly linear. We also prove a truly sub-quadratic upper bound for random ordered matchings with interval chromatic number $2$.


2019 ◽  
Vol 28 (06) ◽  
pp. 936-960
Author(s):  
Andrew J. Uzzell

AbstractIn r-neighbour bootstrap percolation on the vertex set of a graph G, a set A of initially infected vertices spreads by infecting, at each time step, all uninfected vertices with at least r previously infected neighbours. When the elements of A are chosen independently with some probability p, it is natural to study the critical probability pc(G, r) at which it becomes likely that all of V(G) will eventually become infected. Improving a result of Balogh, Bollobás and Morris, we give a bound on the second term in the expansion of the critical probability when G = [n]d and d ⩾ r ⩾ 2. We show that for all d ⩾ r ⩾ 2 there exists a constant cd,r &gt; 0 such that if n is sufficiently large, then $$p_c (\left[ n \right]^d ,{\rm{ }}r){\rm{\le }}\left( {\frac{{\lambda (d,r)}}{{\log _{(r - 1)} (n)}} - \frac{{c_{d,r} }}{{(\log _{(r - 1)} (n))^{3/2} }}} \right)^{d - r + 1} ,$$where λ(d, r) is an exact constant and log(k) (n) denotes the k-times iterated natural logarithm of n.


2011 ◽  
Vol 54 (3) ◽  
pp. 685-693
Author(s):  
P. C. Fenton

AbstractFor functions u, subharmonic in the plane, letand let N(r,u) be the integrated counting function. Suppose that $\mathcal{N}\colon[0,\infty)\rightarrow\mathbb{R}$ is a non-negative non-decreasing convex function of log r for which $\mathcal{N}(r)=0$ for all small r and $\limsup_{r\to\infty}\log\mathcal{N}(r)/\4\log r=\rho$, where 1 < ρ < 2, and defineA sharp upper bound is obtained for $\liminf_{r\to\infty}\mathcal{B}(r,\mathcal{N})/\mathcal{N}(r)$ and a sharp lower bound is obtained for $\limsup_{r\to\infty}\mathcal{A}(r,\mathcal{N})/\mathcal{N}(r)$.


Sign in / Sign up

Export Citation Format

Share Document