Spanning Subgraphs of Random Graphs

2000 ◽  
Vol 9 (2) ◽  
pp. 125-148 ◽  
Author(s):  
OLIVER RIORDAN

Let Gp be a random graph on 2d vertices where edges are selected independently with a fixed probability p > ¼, and let H be the d-dimensional hypercube Qd. We answer a question of Bollobás by showing that, as d → ∞, Gp almost surely has a spanning subgraph isomorphic to H. In fact we prove a stronger result which implies that the number of d-cubes in G ∈ [Gscr ](n, M) is asymptotically normally distributed for M in a certain range. The result proved can be applied to many other graphs, also improving previous results for the lattice, that is, the 2-dimensional square grid. The proof uses the second moment method – writing X for the number of subgraphs of G isomorphic to H, where G is a suitable random graph, we expand the variance of X as a sum over all subgraphs of H itself. As the subgraphs of H may be quite complicated, most of the work is in estimating the various terms of this sum.

10.37236/1581 ◽  
2001 ◽  
Vol 8 (1) ◽  
Author(s):  
Ben Wieland ◽  
Anant P. Godbole

In this paper, we show that the domination number $D$ of a random graph enjoys as sharp a concentration as does its chromatic number $\chi$. We first prove this fact for the sequence of graphs $\{G(n,p_n\},\; n\to\infty$, where a two point concentration is obtained with high probability for $p_n=p$ (fixed) or for a sequence $p_n$ that approaches zero sufficiently slowly. We then consider the infinite graph $G({\bf Z}^+, p)$, where $p$ is fixed, and prove a three point concentration for the domination number with probability one. The main results are proved using the second moment method together with the Borel Cantelli lemma.


2019 ◽  
Vol 29 (1) ◽  
pp. 113-127
Author(s):  
Rajko Nenadov ◽  
Nemanja Škorić

AbstractGiven graphs G and H, a family of vertex-disjoint copies of H in G is called an H-tiling. Conlon, Gowers, Samotij and Schacht showed that for a given graph H and a constant γ>0, there exists C>0 such that if $p \ge C{n^{ - 1/{m_2}(H)}}$ , then asymptotically almost surely every spanning subgraph G of the random graph 𝒢(n, p) with minimum degree at least $\delta (G) \ge (1 - \frac{1}{{{\chi _{{\rm{cr}}}}(H)}} + \gamma )np$ contains an H-tiling that covers all but at most γn vertices. Here, χcr(H) denotes the critical chromatic number, a parameter introduced by Komlós, and m2(H) is the 2-density of H. We show that this theorem can be bootstrapped to obtain an H-tiling covering all but at most $\gamma {(C/p)^{{m_2}(H)}}$ vertices, which is strictly smaller when $p \ge C{n^{ - 1/{m_2}(H)}}$ . In the case where H = K3, this answers the question of Balogh, Lee and Samotij. Furthermore, for an arbitrary graph H we give an upper bound on p for which some leftover is unavoidable and a bound on the size of a largest H -tiling for p below this value.


Author(s):  
Peter Allen ◽  
Julia Böttcher ◽  
Julia Ehrenmüller ◽  
Jakob Schnitzer ◽  
Anusch Taraz

Abstract The bandwidth theorem of Böttcher, Schacht and Taraz states that any n-vertex graph G with minimum degree $\big(\tfrac{k-1}{k}+o(1)\big)n$ contains all n-vertex k-colourable graphs H with bounded maximum degree and bandwidth o(n). Recently, a subset of the authors proved a random graph analogue of this statement: for $p\gg \big(\tfrac{\log n}{n}\big)^{1/\Delta}$ a.a.s. each spanning subgraph G of G(n,p) with minimum degree $\big(\tfrac{k-1}{k}+o(1)\big)pn$ contains all n-vertex k-colourable graphs H with maximum degree $\Delta$ , bandwidth o(n), and at least $C p^{-2}$ vertices not contained in any triangle. This restriction on vertices in triangles is necessary, but limiting. In this paper, we consider how it can be avoided. A special case of our main result is that, under the same conditions, if additionally all vertex neighbourhoods in G contain many copies of $K_\Delta$ then we can drop the restriction on H that $Cp^{-2}$ vertices should not be in triangles.


2017 ◽  
Vol 27 (2) ◽  
pp. 141-161
Author(s):  
PETER ALLEN ◽  
JULIA BÖTTCHER ◽  
YOSHIHARU KOHAYAKAWA ◽  
BARNABY ROBERTS

Recently there has been much interest in studying random graph analogues of well-known classical results in extremal graph theory. Here we follow this trend and investigate the structure of triangle-free subgraphs of G(n, p) with high minimum degree. We prove that asymptotically almost surely each triangle-free spanning subgraph of G(n, p) with minimum degree at least (2/5 + o(1))pn is (p−1n)-close to bipartite, and each spanning triangle-free subgraph of G(n, p) with minimum degree at least (1/3 + ϵ)pn is O(p−1n)-close to r-partite for some r = r(ϵ). These are random graph analogues of a result by Andrásfai, Erdős and Sós (Discrete Math.8 (1974), 205–218), and a result by Thomassen (Combinatorica22 (2002), 591–596). We also show that our results are best possible up to a constant factor.


1973 ◽  
Vol 51 (21) ◽  
pp. 3508-3513 ◽  
Author(s):  
Azélio Castellano ◽  
Jean-Pierre Catteau ◽  
Alain Lablache-Combier ◽  
Guy Allan

The irradiation of 9-phenylacridine in methanol, ethanol, or ether leads to the formation of the 9-phenylacridinyl radical. In methanol-d4, the radical formed is the singly deuterated analog. The structure of these radicals, which exhibit a hyperfine structure in their e.s.r. spectra measured at 233 °K, is supported by simulation of the spectra using calculated spin densities. The agreement between the experimental and theoretical second moment values of the deuterated radical indicates that the parameters previously chosen for the calculation of the theoretical second moments of pyridinyl-type radicals derived from six-membered ring azaaromatics are suitable and that the second moment method can be used in studies of radicals of this type. We conclude that acridine irradiated in methanol-d4 leads to the formation of the singly deuterated acridinyl radical.


Sign in / Sign up

Export Citation Format

Share Document