High Angular Resolution Measurements Of K Shell X-Ray Emission Created by Electron Channeling in the Analytical Electron Microscope

1999 ◽  
Vol 5 (S2) ◽  
pp. 712-713
Author(s):  
Nestor J. Zaluzec

Since the original observations by Duncumb in 1962, a number of studies have been conducted on the effects of electron channel on characteristic x-ray emission and microanalysis. Most of the recent studies have concentrated upon using the phenomenon to perform site specific distributions of impurity elements in ordered compounds using the ALCHEMI methodology. Very few studies have attempted to accurately measure the effect as a function of orientation and compare these results to theory. In this study, two dimensional high angular resolution studies of channeling enhance x-ray emission were performed and herein the results are compared to theoretical calculations of Allen etal.All experimental measurements presented here were conducted on a Philips EM 420T analytical electron microscope. The instrument was operated in the TEM mode, at 120 kV using an LaB6 electron source. The characteristic x-ray emission was measured using an EDAX ultra thin window Si(Li) detector having a FWHM of ∼ 145 eV at Mn Kα.

2000 ◽  
Vol 6 (S2) ◽  
pp. 938-939
Author(s):  
Nestor J. Zaluzec

It has been long known that orientation effects in crystalline materials can influence characteristic x-ray emission and microanalysis. Most of the recent studies have concentrated upon using the phenomenon to perform site specific distributions of impurity elements in ordered compounds using the ALCHEMI methodology. For the most part, it has been asserted that increasing the parameters of thickness, orientation and beam convergence effectively averages out these effects. Using High Angular Resolution Electron Channeling X-ray Spectroscopy (HARECXS) we have carefully measured the phenomenon in a number of ordered systems and find that it must be considered in many cases.All experimental measurements presented here were conducted on a Philips EM 420T analytical electron microscope. The instrument was operated in the TEM mode, at 120 kV using a LaB6 electron source. The characteristic x-ray emission was measured using an ED AX ultra thin window Si(Li) detector having a FWHM of ∼ 145 eV at Mn Ka.


Author(s):  
Zenji Horita ◽  
Ryuzo Nishimachi ◽  
Takeshi Sano ◽  
Minoru Nemoto

Absorption correction is often required in quantitative x-ray microanalysis of thin specimens using the analytical electron microscope. For such correction, it is convenient to use the extrapolation method[l] because the thickness, density and mass absorption coefficient are not necessary in the method. The characteristic x-ray intensities measured for the analysis are only requirement for the absorption correction. However, to achieve extrapolation, it is imperative to obtain data points more than two at different thicknesses in the identical composition. Thus, the method encounters difficulty in analyzing a region equivalent to beam size or the specimen with uniform thickness. The purpose of this study is to modify the method so that extrapolation becomes feasible in such limited conditions. Applicability of the new form is examined by using a standard sample and then it is applied to quantification of phases in a Ni-Al-W ternary alloy.The earlier equation for the extrapolation method was formulated based on the facts that the magnitude of x-ray absorption increases with increasing thickness and that the intensity of a characteristic x-ray exhibiting negligible absorption in the specimen is used as a measure of thickness.


Author(s):  
S. M. Zemyan ◽  
D. B. Williams

As has been reported elsewhere, a thin evaporated Cr film can be used to monitor the x-ray peak to background ratio (P/B) in an analytical electron microscope. Presented here are the results of P/B measurements for the Cr Ka line on a Philips EM430 TEM/STEM, with Link Si(Li) and intrinsic Ge (IG) x-ray detectors. The goal of the study was to determine the best conditions for x-ray microanalysis.We used the Fiori P/B definition, in which P/B is the ratio of the total peak integral to the average background in a 10 eV channel beneath the peak. Peak and background integrals were determined by the window method, using a peak window from 5.0 to 5.7 keV about Cr Kα, and background windows from 4.1 to 4.8 keV and 6.3 to 7.0 keV.


2001 ◽  
Vol 7 (S2) ◽  
pp. 694-695
Author(s):  
Eric Lifshin ◽  
Raynald Gauvin ◽  
Di Wu

In Castaing’s classic Ph.D. dissertation he described how the limiting value of x-ray spatial resolution for x-ray microanalysis, of about 1 μm, was not imposed by the diameter of the electron beam, but by the size of the region excited inside the specimen. Fifty years later this limit still applies to the majority of measurement made in EMAs and SEMs, even though there is often a need to analyze much finer structures. When high resolution chemical analysis is required, it is generally necessary to prepare thin sections and examine them in an analytical electron microscope where the maximum diameter of the excited volume may be as small as a few nanometers. Since it is not always possible or practical, it is important to determine just what is the best spatial resolution attainable for the examination of polished or “as received” samples with an EMA or SEM and how to achieve it experimentally.


2014 ◽  
Vol 20 (4) ◽  
pp. 1318-1326 ◽  
Author(s):  
Nestor J. Zaluzec

AbstractClosed form analytical equations used to calculate the collection solid angle of six common geometries of solid-state X-ray detectors in scanning and scanning/transmission analytical electron microscopy are presented. Using these formulae one can make realistic comparisons of the merits of the different detector geometries in modern electron column instruments. This work updates earlier formulations and adds new detector configurations.


Sign in / Sign up

Export Citation Format

Share Document