scholarly journals In Situ Observation of Gold Nanoparticles Self-assembly at the Solid-Liquid Interface Using Liquid-Phase STEM

2021 ◽  
Vol 27 (S1) ◽  
pp. 2226-2227
Author(s):  
Arixin Bo ◽  
Björn Kuttich ◽  
Tobias Kraus ◽  
Niels de Jonge
2005 ◽  
Vol 16 (1-4) ◽  
pp. 107-110
Author(s):  
A. P. Shpak ◽  
O. P. Fedorov ◽  
E. L. Zhivolub ◽  
Y. J. Bersudskyy ◽  
O. V. Shuleshova

2019 ◽  
Author(s):  
Mei Wang ◽  
Thilini Umesha Dissanayake ◽  
Chiwoo Park ◽  
Karen J. Gaskell ◽  
Taylor Woehl

<p>Nucleation underlies the formation of many liquid-phase synthetic and natural materials with applications in materials chemistry, geochemistry, biophysics, and structural biology. Most liquid-phase nucleation processes are heterogeneous, occurring at specific nucleation sites at a solid-liquid interface; however, the chemical and topographical identity of these nucleation sites and how nucleation kinetics vary from site-to-site remains mysterious. Here we utilize <i>in situ</i> liquid cell electron microscopy to unveil counterintuitive nanoscale non-uniformities in heterogeneous nucleation kinetics on a macroscopically uniform solid-liquid interface. Time-resolved <i>in situ</i> electron microscopy imaging of silver nanoparticle nucleation at a water-silicon nitride interface showed apparently randomly-located nucleation events at the interface. However, nanometric maps of local nucleation kinetics uncovered nanoscale interfacial domains with either slow or rapid nucleation. Interestingly, the interfacial domains vanished at high supersaturation ratio, giving way to rapid spatially uniform nucleation kinetics. Atomic force microscopy and nanoparticle labeling experiments revealed a topographically flat, chemically heterogeneous interface with nanoscale interfacial domains of functional groups similar in size to those observed in the nanometric nucleation maps. These results, along with a semi-quantitative nucleation model, indicate that a chemically non-uniform interface presenting different free energy barriers to heterogeneous nucleation underlies our observations of non-uniform nucleation kinetics. Overall, our results introduce a new imaging modality, nanometric nucleation mapping, and provide important new insights into the impact of surface chemistry on microscopic spatial variations in heterogeneous nucleation kinetics that have not been previously observed.</p>


2019 ◽  
Author(s):  
Mei Wang ◽  
Thilini Umesha Dissanayake ◽  
Chiwoo Park ◽  
Karen J. Gaskell ◽  
Taylor Woehl

<p>Nucleation underlies the formation of many liquid-phase synthetic and natural materials with applications in materials chemistry, geochemistry, biophysics, and structural biology. Most liquid-phase nucleation processes are heterogeneous, occurring at specific nucleation sites at a solid-liquid interface; however, the chemical and topographical identity of these nucleation sites and how nucleation kinetics vary from site-to-site remains mysterious. Here we utilize <i>in situ</i> liquid cell electron microscopy to unveil counterintuitive nanoscale non-uniformities in heterogeneous nucleation kinetics on a macroscopically uniform solid-liquid interface. Time-resolved <i>in situ</i> electron microscopy imaging of silver nanoparticle nucleation at a water-silicon nitride interface showed apparently randomly-located nucleation events at the interface. However, nanometric maps of local nucleation kinetics uncovered nanoscale interfacial domains with either slow or rapid nucleation. Interestingly, the interfacial domains vanished at high supersaturation ratio, giving way to rapid spatially uniform nucleation kinetics. Atomic force microscopy and nanoparticle labeling experiments revealed a topographically flat, chemically heterogeneous interface with nanoscale interfacial domains of functional groups similar in size to those observed in the nanometric nucleation maps. These results, along with a semi-quantitative nucleation model, indicate that a chemically non-uniform interface presenting different free energy barriers to heterogeneous nucleation underlies our observations of non-uniform nucleation kinetics. Overall, our results introduce a new imaging modality, nanometric nucleation mapping, and provide important new insights into the impact of surface chemistry on microscopic spatial variations in heterogeneous nucleation kinetics that have not been previously observed.</p>


Sign in / Sign up

Export Citation Format

Share Document