scholarly journals On generalized theta series liftings

Author(s):  
Min Ho Lee

AbstractWe generalize dual reductive pairs by using reductive groups that are not necessarily subgroups of symplectic groups and construct the corresponding theta-series liftings for certain types of automorphic forms. We also discuss connections of such generalized theta-series liftings with families of abelian varieties parametrized by an arithmetic variety.

1980 ◽  
Vol 77 ◽  
pp. 145-166 ◽  
Author(s):  
Toshiaki Suzuki

During 1934-1936, W. L. Ferrar investigated the relation between summation formulae and Dirichlet series with functional equations, inspired by Voronoi’s works (1904) on summation formula with respect to the numbers of divisors. In [11] A. Weil showed that the automorphic properties of theta series are expressed by generalized Poisson summation formulae with respect to the so-called Weil representation. On the other hand, T. Kubota, in his study of the reciprocity law in a number field, defined a generalized theta series and a generalized Weil type representation of SL(2, C) and obtained similar results to those of A. Weil (1970-1976, [5], [6], [7]). The methods, used by W. L. Ferrar and T. Kubota, to obtain (generalized Poisson) summation formulae depend similarly on functional equations of Dirichlet series (attached to the generalized theta series).


1991 ◽  
Vol 121 ◽  
pp. 35-96 ◽  
Author(s):  
Siegfried Böcherer ◽  
Rainer Schulze-Pillot

The two main problems in the theory of the theta correspondence or lifting (between automorphic forms on some adelic orthogonal group and on some adelic symplectic or metaplectic group) are the characterization of kernel and image of this correspondence. Both problems tend to be particularly difficult if the two groups are approximately the same size.


1997 ◽  
Vol 147 ◽  
pp. 71-106 ◽  
Author(s):  
S. Böcherer ◽  
R. Schulze-Pillot

AbstractWe continue our study of Yoshida’s lifting, which associates to a pair of automorphic forms on the adelic multiplicative group of a quaternion algebra a Siegel modular form of degree 2. We consider here the case that the automorphic forms on the quaternion algebra correspond to modular forms of arbitrary even weights and square free levels; in particular we obtain a construction of Siegel modular forms of weight 3 attached to a pair of elliptic modular forms of weights 2 and 4.


2000 ◽  
Vol 61 (3) ◽  
pp. 353-370
Author(s):  
Min Ho Lee ◽  
Hyo Chul Myung

We discuss Poisson transforms which carry sections of certain vector bundles to mixed automorphic forms, and identify vector bundles whose sections are liftings of holomorphic forms on families of Abelian varieties via Poisson transforms.


2013 ◽  
Vol 149 (7) ◽  
pp. 1061-1090 ◽  
Author(s):  
Harald Grobner

AbstractLet $G$ be a connected, reductive algebraic group over a number field $F$ and let $E$ be an algebraic representation of ${G}_{\infty } $. In this paper we describe the Eisenstein cohomology ${ H}_{\mathrm{Eis} }^{q} (G, E)$ of $G$ below a certain degree ${q}_{ \mathsf{res} } $ in terms of Franke’s filtration of the space of automorphic forms. This entails a description of the map ${H}^{q} ({\mathfrak{m}}_{G} , K, \Pi \otimes E)\rightarrow { H}_{\mathrm{Eis} }^{q} (G, E)$, $q\lt {q}_{ \mathsf{res} } $, for all automorphic representations $\Pi $ of $G( \mathbb{A} )$ appearing in the residual spectrum. Moreover, we show that below an easily computable degree ${q}_{ \mathsf{max} } $, the space of Eisenstein cohomology ${ H}_{\mathrm{Eis} }^{q} (G, E)$ is isomorphic to the cohomology of the space of square-integrable, residual automorphic forms. We discuss some more consequences of our result and apply it, in order to derive a result on the residual Eisenstein cohomology of inner forms of ${\mathrm{GL} }_{n} $ and the split classical groups of type ${B}_{n} $, ${C}_{n} $, ${D}_{n} $.


Sign in / Sign up

Export Citation Format

Share Document