scholarly journals Residues of Eisenstein series and the automorphic cohomology of reductive groups

2013 ◽  
Vol 149 (7) ◽  
pp. 1061-1090 ◽  
Author(s):  
Harald Grobner

AbstractLet $G$ be a connected, reductive algebraic group over a number field $F$ and let $E$ be an algebraic representation of ${G}_{\infty } $. In this paper we describe the Eisenstein cohomology ${ H}_{\mathrm{Eis} }^{q} (G, E)$ of $G$ below a certain degree ${q}_{ \mathsf{res} } $ in terms of Franke’s filtration of the space of automorphic forms. This entails a description of the map ${H}^{q} ({\mathfrak{m}}_{G} , K, \Pi \otimes E)\rightarrow { H}_{\mathrm{Eis} }^{q} (G, E)$, $q\lt {q}_{ \mathsf{res} } $, for all automorphic representations $\Pi $ of $G( \mathbb{A} )$ appearing in the residual spectrum. Moreover, we show that below an easily computable degree ${q}_{ \mathsf{max} } $, the space of Eisenstein cohomology ${ H}_{\mathrm{Eis} }^{q} (G, E)$ is isomorphic to the cohomology of the space of square-integrable, residual automorphic forms. We discuss some more consequences of our result and apply it, in order to derive a result on the residual Eisenstein cohomology of inner forms of ${\mathrm{GL} }_{n} $ and the split classical groups of type ${B}_{n} $, ${C}_{n} $, ${D}_{n} $.

2009 ◽  
Vol 146 (1) ◽  
pp. 21-57 ◽  
Author(s):  
Harald Grobner

AbstractLetGbe the simple algebraic group Sp(2,2), to be defined over ℚ. It is a non-quasi-split, ℚ-rank-two inner form of the split symplectic group Sp8of rank four. The cohomology of the space of automorphic forms onGhas a natural subspace, which is spanned by classes represented by residues and derivatives of cuspidal Eisenstein series. It is called Eisenstein cohomology. In this paper we give a detailed description of the Eisenstein cohomologyHqEis(G,E) ofGin the case of regular coefficientsE. It is spanned only by holomorphic Eisenstein series. For non-regular coefficientsEwe really have to detect the poles of our Eisenstein series. SinceGis not quasi-split, we are out of the scope of the so-called ‘Langlands–Shahidi method’ (cf. F. Shahidi,On certainL-functions, Amer. J. Math.103(1981), 297–355; F. Shahidi,On the Ramanujan conjecture and finiteness of poles for certainL-functions, Ann. of Math. (2)127(1988), 547–584). We apply recent results of Grbac in order to find the double poles of Eisenstein series attached to the minimal parabolicP0ofG. Having collected this information, we determine the square-integrable Eisenstein cohomology supported byP0with respect to arbitrary coefficients and prove a vanishing result. This will exemplify a general theorem we prove in this paper on the distribution of maximally residual Eisenstein cohomology classes.


2019 ◽  
Vol 31 (5) ◽  
pp. 1225-1263
Author(s):  
Neven Grbac ◽  
Joachim Schwermer

AbstractThe cohomology of an arithmetic congruence subgroup of a connected reductive algebraic group defined over a number field is captured in the automorphic cohomology of that group. The residual Eisenstein cohomology is by definition the part of the automorphic cohomology represented by square-integrable residues of Eisenstein series. The existence of residual Eisenstein cohomology classes depends on a subtle combination of geometric conditions (coming from cohomological reasons) and arithmetic conditions in terms of analytic properties of automorphic L-functions (coming from the study of poles of Eisenstein series). Hence, there are almost no unconditional results in the literature regarding the very existence of non-trivial residual Eisenstein cohomology classes. In this paper, we show the existence of certain non-trivial residual cohomology classes in the case of the split symplectic, and odd and even special orthogonal groups of rank two, as well as the exceptional group of type {\mathrm{G}_{2}}, defined over a totally real number field. The construction of cuspidal automorphic representations of {\mathrm{GL}_{2}} with prescribed local and global properties is decisive in this context.


2013 ◽  
Vol 149 (6) ◽  
pp. 959-995 ◽  
Author(s):  
U. K. Anandavardhanan ◽  
Dipendra Prasad

AbstractIn this paper, we consider the $\mathrm{SL} (2)$ analogue of two well-known theorems about period integrals of automorphic forms on $\mathrm{GL} (2)$: one due to Harder–Langlands–Rapoport about non-vanishing of period integrals on ${\mathrm{GL} }_{2} ({ \mathbb{A} }_{F} )$ of cuspidal automorphic representations on ${\mathrm{GL} }_{2} ({ \mathbb{A} }_{E} )$ where $E$ is a quadratic extension of a number field $F$, and the other due to Waldspurger involving toric periods of automorphic forms on ${\mathrm{GL} }_{2} ({ \mathbb{A} }_{F} )$. In both these cases, now involving $\mathrm{SL} (2)$, we analyze period integrals on global$L$-packets; we prove that under certain conditions, a global automorphic $L$-packet which at each place of a number field has a distinguished representation, contains globally distinguished representations, and further, an automorphic representation which is locally distinguished is globally distinguished.


Algebra ◽  
2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Sergey Arkhipov ◽  
Tina Kanstrup

We introduce the notion of Demazure descent data on a triangulated category C and define the descent category for such data. We illustrate the definition by our basic example. Let G be a reductive algebraic group with a Borel subgroup B. Demazure functors form Demazure descent data on DbRepB and the descent category is equivalent to DbRepG.


1979 ◽  
Vol 31 (4) ◽  
pp. 726-785 ◽  
Author(s):  
J-P. Labesse ◽  
R. P. Langlands

The notion of L-indistinguishability, like many others current in the study of L-functions, has yet to be completely defined, but it is in our opinion important for the study of automorphic forms and of representations of algebraic groups. In this paper we study it for the simplest class of groups, basically forms of SL(2). Although the definition we use is applicable to very few groups, there is every reason to believe that the results will have general analogues [12].The phenomena which the notion is intended to express have been met–and exploited–by others (Hecke [5] § 13, Shimura [17]). Their source seems to lie in the distinction between conjugacy and stable conjugacy. If F is a field, G a reductive algebraic group over F, and the algebraic closure of F then two elements of G(F) may be conjugate in without being conjugate in G(F).


1982 ◽  
Vol 34 (5) ◽  
pp. 1112-1182 ◽  
Author(s):  
L. E. Morris

This paper is a continuation of [5]. As stated there, the problem is to explicitly decompose the space L2 = L2(G(F)\G(A)) into simpler invariant subspaces, and to deal with the associated continuous spectrum in case G is a connected reductive algebraic group defined over a global function field. In that paper the solution was begun by studying Eisenstein series associated to cusp forms on Levi components of parabolic subgroups; these Eisenstein series and the associated intertwining operators were shown to be rational functions satisfying functional equations. To go further it is necessary to consider more general Eisenstein series and intertwining operators, and to show that they have similar properties. Such Eisenstein series arise from the cuspidal ones by a residue taking process, which is detailed in a disguised form suitable for induction in the first part of this paper: the main result is a preliminary form of the spectral decomposition.


Author(s):  
Maike Gruchot ◽  
Alastair Litterick ◽  
Gerhard Röhrle

AbstractIn this note, we unify and extend various concepts in the area of G-complete reducibility, where G is a reductive algebraic group. By results of Serre and Bate–Martin–Röhrle, the usual notion of G-complete reducibility can be re-framed as a property of an action of a group on the spherical building of the identity component of G. We show that other variations of this notion, such as relative complete reducibility and $$\sigma $$ σ -complete reducibility, can also be viewed as special cases of this building-theoretic definition, and hence a number of results from these areas are special cases of more general properties.


2020 ◽  
Vol 8 ◽  
Author(s):  
MAIKE GRUCHOT ◽  
ALASTAIR LITTERICK ◽  
GERHARD RÖHRLE

We study a relative variant of Serre’s notion of $G$ -complete reducibility for a reductive algebraic group $G$ . We let $K$ be a reductive subgroup of $G$ , and consider subgroups of $G$ that normalize the identity component $K^{\circ }$ . We show that such a subgroup is relatively $G$ -completely reducible with respect to $K$ if and only if its image in the automorphism group of $K^{\circ }$ is completely reducible. This allows us to generalize a number of fundamental results from the absolute to the relative setting. We also derive analogous results for Lie subalgebras of the Lie algebra of $G$ , as well as ‘rational’ versions over nonalgebraically closed fields.


2019 ◽  
Vol 72 (1) ◽  
pp. 183-201 ◽  
Author(s):  
Marcela Hanzer ◽  
Gordan Savin

AbstractWe describe poles and the corresponding residual automorphic representations of Eisenstein series attached to maximal parabolic subgroups whose unipotent radicals admit Jordan algebra structure.


Sign in / Sign up

Export Citation Format

Share Document