scholarly journals Bounds for the Asymptotic Growth Rate of an Age-Dependent Branching Process

1969 ◽  
Vol 10 (1-2) ◽  
pp. 231-235 ◽  
Author(s):  
P. J. Brockwell

Let M(t) denote the mean population size at time t (conditional on a single ancestor of age zero at time zero) of a branching process in which the distribution of the lifetime T of an individual is given by Pr {T≦t} =G(t), and in which each individual gives rise (at death) to an expected number A of offspring (1λ A λ ∞). expected number A of offspring (1 < A ∞). Then it is well-known (Harris [1], p. 143) that, provided G(O+)-G(O-) 0 and G is not a lattice distribution, M(t) is given asymptotically by where c is the unique positive value of p satisfying the equation .

1986 ◽  
Vol 23 (03) ◽  
pp. 585-600 ◽  
Author(s):  
D. J. Daley ◽  
David M. Hull ◽  
James M. Taylor

For a bisexual Galton–Watson branching process with superadditive mating function there is a simple criterion for determining whether or not the process becomes extinct with probability 1, namely, that the asymptotic growth rate r should not exceed 1. When extinction is not certain (equivalently, r &gt; 1), simple upper and lower bounds are established for the extinction probabilities. An example suggests that in the critical case that r = 1, some condition like superadditivity is essential for ultimate extinction to be certain. Some illustrative numerical comparisons of particular mating functions are made using a Poisson offspring distribution.


1986 ◽  
Vol 23 (3) ◽  
pp. 585-600 ◽  
Author(s):  
D. J. Daley ◽  
David M. Hull ◽  
James M. Taylor

For a bisexual Galton–Watson branching process with superadditive mating function there is a simple criterion for determining whether or not the process becomes extinct with probability 1, namely, that the asymptotic growth rate r should not exceed 1. When extinction is not certain (equivalently, r > 1), simple upper and lower bounds are established for the extinction probabilities. An example suggests that in the critical case that r = 1, some condition like superadditivity is essential for ultimate extinction to be certain. Some illustrative numerical comparisons of particular mating functions are made using a Poisson offspring distribution.


1978 ◽  
Vol 15 (2) ◽  
pp. 235-242 ◽  
Author(s):  
Martin I. Goldstein

Let Z(t) ··· (Z1(t), …, Zk (t)) be an indecomposable critical k-type age-dependent branching process with generating function F(s, t). Denote the right and left eigenvalues of the mean matrix M by u and v respectively and suppose μ is the vector of mean lifetimes, i.e. Mu = u, vM = v.It is shown that, under second moment assumptions, uniformly for s ∈ ([0, 1]k of the form s = 1 – cu, c a constant. Here vμ is the componentwise product of the vectors and Q[u] is a constant.This result is then used to give a new proof of the exponential limit law.


1978 ◽  
Vol 15 (02) ◽  
pp. 235-242
Author(s):  
Martin I. Goldstein

Let Z(t) ··· (Z 1(t), …, Zk (t)) be an indecomposable critical k-type age-dependent branching process with generating function F(s, t). Denote the right and left eigenvalues of the mean matrix M by u and v respectively and suppose μ is the vector of mean lifetimes, i.e. Mu = u, vM = v. It is shown that, under second moment assumptions, uniformly for s ∈ ([0, 1] k of the form s = 1 – cu, c a constant. Here vμ is the componentwise product of the vectors and Q[u] is a constant. This result is then used to give a new proof of the exponential limit law.


1976 ◽  
Vol 13 (4) ◽  
pp. 798-803 ◽  
Author(s):  
R. A. Doney

For a subcritical Bellman-Harris process for which the Malthusian parameter α exists and the mean function M(t)∼ aeat as t → ∞, a necessary and sufficient condition for e–at (1 –F(s, t)) to have a non-zero limit is known. The corresponding condition is given for the generalized branching process.


2020 ◽  
Vol 30 (02) ◽  
pp. 339-378
Author(s):  
Jared Adams ◽  
Eric M. Freden

Denote the Baumslag–Solitar family of groups as [Formula: see text]). When [Formula: see text] we study the Bass–Serre tree [Formula: see text] for [Formula: see text] as a geometric object. We suggest that the irregularity of [Formula: see text] is the principal obstruction for computing the growth series for the group. In the particular case [Formula: see text] we exhibit a set [Formula: see text] of normal form words having minimal length for [Formula: see text] and use it to derive various counting algorithms. The language [Formula: see text] is context-sensitive but not context-free. The tree [Formula: see text] has a self-similar structure and contains infinitely many cone types. All cones have the same asymptotic growth rate as [Formula: see text] itself. We derive bounds for this growth rate, the lower bound also being a bound on the growth rate of [Formula: see text].


1976 ◽  
Vol 13 (3) ◽  
pp. 455-465
Author(s):  
D. I. Saunders

For the age-dependent branching process with arbitrary state space let M(x, t, A) be the expected number of individuals alive at time t with states in A given an initial individual at x. Subject to various conditions it is shown that M(x, t, A)e–at converges to a non-trivial limit where α is the Malthusian parameter (α = 0 for the critical case, and is negative in the subcritical case). The method of proof also yields rates of convergence.


1967 ◽  
Vol 4 (2) ◽  
pp. 170-174 ◽  
Author(s):  
Fredrik Esscher

When experience is insufficient to permit a direct empirical determination of the premium rates of a Stop Loss Cover, we have to fall back upon mathematical models from the theory of probability—especially the collective theory of risk—and upon such assumptions as may be considered reasonable.The paper deals with some problems connected with such calculations of Stop Loss premiums for a portfolio consisting of non-life insurances. The portfolio was so large that the values of the premium rates and other quantities required could be approximated by their limit values, obtained according to theory when the expected number of claims tends to infinity.The calculations were based on the following assumptions.Let F(x, t) denote the probability that the total amount of claims paid during a given period of time is ≤ x when the expected number of claims during the same period increases from o to t. The net premium II (x, t) for a Stop Loss reinsurance covering the amount by which the total amount of claims paid during this period may exceed x, is defined by the formula and the variance of the amount (z—x) to be paid on account of the Stop Loss Cover, by the formula As to the distribution function F(x, t) it is assumed that wherePn(t) is the probability that n claims have occurred during the given period, when the expected number of claims increases from o to t,V(x) is the distribution function of the claims, giving the conditioned probability that the amount of a claim is ≤ x when it is known that a claim has occurred, andVn*(x) is the nth convolution of the function V(x) with itself.V(x) is supposed to be normalized so that the mean = I.


1971 ◽  
Vol 8 (4) ◽  
pp. 655-667 ◽  
Author(s):  
M. L. Samuels

SummaryIn a standard age-dependent branching process, let Rn(t) denote the proportion of the population belonging to the nth generation at time t. It is shown that in the supercritical case the distribution {Rn(t); n = 0, 1, …} has asymptotically, for large t, a (non-random) normal form, and that the mean ΣnRn(t) is asymptotically linear in t. Further, it is found that, for large n, Rn(t) has the shape of a normal density function (of t).Two other random functions are also considered: (a) the proportion of the nth generation which is alive at time t, and (b) the proportion of the nth generation which has been born by time t. These functions are also found to have asymptotically a normal form, but with parameters different from those relevant for {Rn(t)}.For the critical and subcritical processes, analogous results hold with the random variables replaced by their expectations.


1976 ◽  
Vol 13 (3) ◽  
pp. 476-485 ◽  
Author(s):  
Howard J. Weiner

Let Z(t) denote the number of cells alive at time t in a critical Bellman-Harris age-dependent branching process, that is, where the mean number of offspring per parent is one. A comparison method is used to show for k ≧ 1, and a high-order moment condition on G(t), where G(t) is the cell lifetime distribution, that lim t→∞t2P[Z(t) = k] = ak > 0, where {ak} are constants.The method is also applied to the total progeny in the critical process.


Sign in / Sign up

Export Citation Format

Share Document