scholarly journals A characterisation of the ellipsoid

1970 ◽  
Vol 11 (4) ◽  
pp. 385-394 ◽  
Author(s):  
P. W. Aitchison

The ellipsoid is characterised among all convex bodies in n-dimensional Euclidean space, Rn, by many different properties. In this paper we give a characterisation which generalizes a number of previous results mentioned in [2], p. 142. The major result will be used, in a paper yet to be published, to prove some results concerning generalizations of the Minkowski theory of reduction of positive definite quadratic forms.

1972 ◽  
Vol 14 (3) ◽  
pp. 336-351 ◽  
Author(s):  
P. W. Aitchison

Minkowski proved two important finiteness theorems concerning the reduction theory of positive definite quadratic forms (see [6], p. 285 or [7], §8 and §10). A positive definite quadratic form in n variables may be considered as an ellipsoid in n-dimensional Euclidean space, Rn, and then the two results can be investigated more generally by replacing the ellipsoid by any symmetric convex body in Rn. We show here that when n≧3 the two finiteness theorems hold only in the case of the ellipsoid. This is equivalent to showing that Minkowski's results do not hold in a general Minkowski space, namely in a euclidean space where the unit ball is a general symmetric convex body instead of the sphere or ellipsoid.


1968 ◽  
Vol 8 (1) ◽  
pp. 56-62 ◽  
Author(s):  
T. J. Dickson

The problem of finding the most economical coverings of n-dimensional Euclidean space by equal spheres whose centres form a lattice, which is equivalent to a problem concerning the inhomogeneous minima of positive definite quadratic forms, has been discussed recently by Barnes and Dickson [1]. The reader is referred to [1] for a complete background on the problem. Terms and notations used will be as in that paper.


2009 ◽  
Vol 52 (3) ◽  
pp. 361-365 ◽  
Author(s):  
Fejes Tóth Gábor

AbstractA classical theorem of Rogers states that for any convex body K in n-dimensional Euclidean space there exists a covering of the space by translates of K with density not exceeding n log n + n log log n + 5n. Rogers’ theorem does not say anything about the structure of such a covering. We show that for sufficiently large values of n the same bound can be attained by a covering which is the union of O(log n) translates of a lattice arrangement of K.


Author(s):  
R. A. Rankin

I write X for the point (x1, x2, …, xn) of n-dimensional Euclidean space Rn. The coordinates x1, x2, …, xn are real numbers. The origin (0, 0,…, 0) is denoted by O. If t is a real number, tX denotes the point (tx1, tx2, …, txn); in particular, − X is the point (−x1, −x2,…, −xn). Also X + Y denotes the point {x1 + y1, x2 + y2, …, xn + yn).


2011 ◽  
Vol 43 (2) ◽  
pp. 308-321 ◽  
Author(s):  
Daniel Hug ◽  
Rolf Schneider

For stationary Poisson hyperplane tessellations in d-dimensional Euclidean space and a dimension k ∈ {1, …, d}, we investigate the typical k-face and the weighted typical k-face (weighted by k-dimensional volume), without isotropy assumptions on the tessellation. The case k = d concerns the previously studied typical cell and zero cell, respectively. For k < d, we first find the conditional distribution of the typical k-face or weighted typical k-face, given its direction. Then we investigate how the shapes of the faces are influenced by assumptions of different types: either via containment of convex bodies of given volume (including a new result for k = d), or, for weighted typical k-faces, in the spirit of D. G. Kendall's asymptotic problem, suitably generalized. In all these results on typical or weighted typical k-faces with given direction space L, the Blaschke body of the section process of the underlying hyperplane process with L plays a crucial role.


1962 ◽  
Vol 58 (2) ◽  
pp. 217-220 ◽  
Author(s):  
E. Asplund ◽  
E. Grosswald ◽  
B. Grünbaum

In the present note we discuss some properties of a ‘measure of asymmetry’ of convex bodies in n-dimensional Euclidean space. Various measures of asymmetry have been treated in the literature (see, for example, (1), (6); references to most of the relevant results may be found in (4)). The measure introduced here has the somewhat surprising property that for n ≥ 3 the n-simplex is not the most asymmetric convex body in En. It seems to be the only measure of asymmetry for which this fact is known.


1959 ◽  
Vol 11 ◽  
pp. 256-261 ◽  
Author(s):  
A. C. Woods

We select a Cartesian co-ordinate system in ndimensional Euclidean space Rn with origin 0 and employ the usual pointvector notation.By a lattice Λ in Rn we mean the set of all rational integral combinations of n linearly independent points X1, X2, … , Xn of Rn. The points X1 X2, … , Xn are said to form a basis of Λ. Let {X1, X2, … , Xn) denote the determinant formed when the co-ordinates of Xi are taken in order as the ith row of the determinant for i = 1,2, … , n. The absolute value of this determinant is called the determinant d(Λ) of Λ. It is well known that d(Λ) is independent of the particular basis one takes for Λ.A star body in Rn is a closed set of points K such that if X ∈ K then every point of the form tX where — 1 < t < 1 is an inner point of K.


1981 ◽  
Vol 23 (2) ◽  
pp. 249-253 ◽  
Author(s):  
George Stamou

The notion of “mean II-curvature” of a C4-surface (without parabolic points) in the three-dimensional Euclidean space has been introduced by Ekkehart Glässner. The aim of this note is to give some global characterizations of the sphere related to the above notion.In the three-dimensional Euclidean space E3 we consider a sufficiently smooth ovaloid S (closed convex surface) with Gaussian curvature K > 0 . The ovaloid S possesses a positive definite second fundamental form II, if appropriately oriented. During the last years several authors have been concerned with the problem of characterizations of the sphere by the curvature of the second fundamental form of S. In this paper we give some characterizations of the sphere using the concept of the mean II-curvatureHII (of S), defined by Ekkehart Glässner.


2011 ◽  
Vol 43 (02) ◽  
pp. 308-321 ◽  
Author(s):  
Daniel Hug ◽  
Rolf Schneider

For stationary Poisson hyperplane tessellations in d-dimensional Euclidean space and a dimension k ∈ {1, …, d}, we investigate the typical k-face and the weighted typical k-face (weighted by k-dimensional volume), without isotropy assumptions on the tessellation. The case k = d concerns the previously studied typical cell and zero cell, respectively. For k &lt; d, we first find the conditional distribution of the typical k-face or weighted typical k-face, given its direction. Then we investigate how the shapes of the faces are influenced by assumptions of different types: either via containment of convex bodies of given volume (including a new result for k = d), or, for weighted typical k-faces, in the spirit of D. G. Kendall's asymptotic problem, suitably generalized. In all these results on typical or weighted typical k-faces with given direction space L, the Blaschke body of the section process of the underlying hyperplane process with L plays a crucial role.


2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Peter M. Gruber

AbstractRecent results on extremum properties of the density of lattice packings of smooth convex bodies and balls extend and refine Voronoĭ’s classical criterion for balls. This article treats in more detail the special case of lattice packings and coverings with circular discs. The aim is to determine those lattices for which the densities of the corresponding packings and coverings with circular discs, and certain products and quotients thereof, are semi-stationary, stationary, extreme, and ultra-extreme. The latter notion is a sharper version of extremality. It turns out that in all cases where solutions exist, the regular hexagonal lattices are solutions. Unexpectedly, in a few cases the square lattices and in one case special parallelogram lattices are solutions too. A further surprise is the fact that the lattices forwhich the circle packing density is extreme coincide with the lattices with ultra-extreme density. For semi-stationarity, stationarity and ultra-extremality the duality between packing and covering results breaks down. All results may be interpreted in terms of binary positive definite quadratic forms.


Sign in / Sign up

Export Citation Format

Share Document