convex surface
Recently Published Documents


TOTAL DOCUMENTS

429
(FIVE YEARS 78)

H-INDEX

32
(FIVE YEARS 2)

Hand ◽  
2022 ◽  
pp. 155894472110643
Author(s):  
Jimmy H. Daruwalla ◽  
Jan Skrok ◽  
Mitchell A. Pet ◽  
Aviram M. Giladi ◽  
James P. Higgins

Background: The medial femoral trochlea (MFT) osteochondral flap is employed for reconstruction of unsalvageable scaphoid proximal pole nonunions. The convex surface of the cartilage-bearing proximal trochlea is used to replace the similarly contoured proximal scaphoid and articulate with the concave scaphoid fossa of the radius. A magnetic resonance imaging (MRI) comparison of the shape of the MFT as it relates to the native proximal scaphoid has not been previously performed. Our study aimed to quantifiably compare the shape of the MFT, proximal scaphoid, and scaphoid fossa. Methods: Using imaging processing software, we measured radius of curvature of the articular segments in MRI scans of 10 healthy subjects’ wrists and knees. Results: Compared with the scaphoid fossa, average ratio of the radius of circumference of the proximal scaphoid was 0.79 and 0.78 in the coronal and sagittal planes, respectively. Compared with the scaphoid fossa, average ratio of the radius of circumference of the MFT was 0.98 and 1.31 in the coronal and sagittal planes, respectively. The radius of curvature of the MFT was larger than the proximal scaphoid, in the coronal and sagittal planes. In the coronal plane, the MFT radius of curvature is nearly identical to the scaphoid fossa, a closer match than the scaphoid itself. In the sagittal plane, the radius of curvature of the MFT was larger than the radius of curvature of the scaphoid fossa. Conclusions: Our data suggest that the radius of curvature, in the sagittal and coronal planes, of the MFT and proximal scaphoid is disparate.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7889
Author(s):  
Xiaolong Li ◽  
Mingde Wan ◽  
Shouyi Yan ◽  
Xin Lin

The temperature properties of real-type direct-current gas-insulated transmission lines (DC-GIL) with a basin-type spacer were investigated by the finite element method in this paper. A horizontally installed model was established and the temperature distribution was obtained with a 3D model. The specific heat capacity and thermal conductivity of the spacer were measured and applied in the simulation. The results show that the temperature of the convex surface was slightly higher than that of the concave surface. With an increase in the SF6 pressure, the temperature of the spacer decreased, which can be attributed to the improvement of convection due to increases in the heat capacity per unit volume. With an increase in the ambient temperature, the temperature of the spacer increased linearly. The temperature difference between the inner and outer parts of the spacer increased with increases in the load current. Besides, an obvious increase in the surface electric field strength appeared under the influence of the thermal gradient compared to the results without the thermal gradient. Thus, special attention should be paid to the insulation properties of the spacer considering the influence of temperature distribution. This study evaluates both the thermal and insulation characteristics of the GIL along with the spacer under various conditions.


Author(s):  
Wenbo Zhou ◽  
Valeriy Mazepa ◽  
Stepan Shiyatov ◽  
Tianqi Zhang ◽  
Desheng Liu ◽  
...  

Abstract Previous studies discovered a spatially heterogeneous expansion of Siberian larch into the tundra of the Polar Urals (Russia). This study reveals that the spatial pattern of encroachment of tree stands is related to environmental factors including topography and snow cover. Structural and allometric characteristics of trees, along with terrain elevation and snow depth were collected along a transect 860 m long and 80 m wide. Terrain curvature indices, as representative properties, were derived across a range of scales in order to characterize microtopography. A density-based clustering method was used here to analyze the spatial and temporal patterns of tree stems distribution. Results of the topographic analysis suggest that trees tend to cluster in areas with convex surface. The clustering analysis also indicates that the patterns of tree locations are linked to snow distribution. Records from the earliest campaign in 1960 show that trees lived mainly at the middle and bottom of the transect across the areas of high snow depth. As trees expanded uphill with a warming climate in recent decades, the high snow depth areas also shifted upward creating favorable conditions for recent trees growth at locations that were previously covered with heavy snow. The identified landscape signatures of increasing above-ground Arctic biomass in terms of tall vegetation can facilitate scaling to larger area regions.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yang Jin ◽  
Lei Liu ◽  
Peili Yu ◽  
Feng Lin ◽  
Xiaohao Shi ◽  
...  

Airway smooth muscle cells (ASMCs) exist in a form of helical winding bundles within the bronchial airway wall. Such tubular tissue provides cells with considerable curvature as a physical constraint, which is widely thought as an important determinant of cell behaviors. However, this process is difficult to mimic in the conventional planar cell culture system. Here, we report a method to develop chips with cell-scale tubular (concave and convex) surfaces from fused deposition modeling 3D printing to explore how ASMCs adapt to the cylindrical curvature for morphogenesis and function. Results showed that ASMCs self-organized into two distinctively different patterns of orientation on the concave and convex surfaces, eventually aligning either invariably perpendicular to the cylinder axis on the concave surface or curvature-dependently angled on the convex surface. Such oriented alignments of the ASMCs were maintained even when the cells were in dynamic movement during migration and spreading along the tubular surfaces. Furthermore, the ASMCs underwent a phenotype transition on the tubular (both concave and convex) surfaces, significantly reducing contractility as compared to ASMCs cultured on a flat surface, which was reflected in the changes of proliferation, migration and gene expression of contractile biomarkers. Taken together, our study revealed a curvature-induced pattern formation and functional modulation of ASMCs in vitro, which is not only important to better understanding airway smooth muscle pathophysiology, but may also be useful in the development of new techniques for airway disease diagnosis and therapy such as engineering airway tissues or organoids.


2021 ◽  
Vol 01 ◽  
Author(s):  
T. Kim ◽  
D. Barratt ◽  
M.D. Atkins ◽  
S.W. Schekman ◽  
T.J. Lu

: Jet impingement in engineering applications is used because of the capacity to transport high levels of heat flux from a surface of interest for cooling purposes. Thus far, based on a vast database of experiments and numerical simulations, several correlations have been established for local and average heat transfer on target surfaces as functions of relevant fluid properties and geometric parameters. In addition to these correlations, significant efforts have been made to gain fundamental understanding of jet impingement in varying configurations. However, the physics governing heat transfer by jet impingement are conjectured, even unclear. Thus, this article collates and discusses recent advances in fluidic mechanisms underlying the heat transfer by submerged jet impingement on a convex surface. The fluid properties developed on a convex surface due to jet impingement with varied characteristics, including jet-to-target surface spacing, interchange their primary roles in heat transfer from/to a convex surface. Particularly, conjectures associated with relevant fluidic mechanisms that have been widely accepted, are confirmed, clarified, and corrected.


Sign in / Sign up

Export Citation Format

Share Document