symmetric convex body
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 5)

H-INDEX

4
(FIVE YEARS 0)

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Giorgos Chasapis ◽  
Nikos Skarmogiannis

AbstractImproving a result of Hajela, we show for every function f with limn→∞f(n) = ∞ and f(n) = o(n) that there exists n0 = n0(f) such that for every n ⩾ n0 and any S ⊆ {–1, 1}n with cardinality |S| ⩽ 2n/f(n) one can find orthonormal vectors x1, …, xn ∈ ℝn satisfying $\begin{array}{} \displaystyle \|\varepsilon_1x_1+\dots+\varepsilon_nx_n\|_{\infty }\geqslant c\sqrt{\log f(n)} \end{array}$ for all (ε1, …, εn) ∈ S. We obtain analogous results in the case where x1, …, xn are independent random points uniformly distributed in the Euclidean unit ball $\begin{array}{} \displaystyle B_2^n \end{array}$ or in any symmetric convex body, and the $\begin{array}{} \displaystyle \ell_{\infty }^n \end{array}$-norm is replaced by an arbitrary norm on ℝn.


Author(s):  
Ilya Molchanov ◽  
Felix Nagel

We consider the family of convex bodies obtained from an origin symmetric convex body [Formula: see text] by multiplication with diagonal matrices, by forming Minkowski sums of the transformed sets, and by taking limits in the Hausdorff metric. Support functions of these convex bodies arise by an integral transform of measures on the family of diagonal matrices, equivalently, on Euclidean space, which we call [Formula: see text]-transform. In the special case, if [Formula: see text] is a segment not lying on any coordinate hyperplane, one obtains the family of zonoids and the cosine transform. In this case two facts are known: the vector space generated by support functions of zonoids is dense in the family of support functions of origin symmetric convex bodies; and the cosine transform is injective. We show that these two properties are equivalent for general [Formula: see text]. For [Formula: see text] being a generalized zonoid, we determine conditions that ensure the injectivity of the [Formula: see text]-transform. Relations to mixed volumes and to a geometric description of one-sided stable laws are discussed. The later probabilistic application motivates our study of a family of convex bodies obtained as limits of sums of diagonally scaled [Formula: see text]-balls.


2017 ◽  
Vol 9 (2) ◽  
pp. 84
Author(s):  
Beomjong Kwak

In this paper, we focus on lattice covering of centrally symmetric convex body on $\mathbb{R}^2$. While there is no constraint on the lattice in many other results about lattice covering, in this study, we only consider lattices congruent to a given lattice to retain more information on the lattice. To obtain some upper bounds on the infimum of the density of such covering, we will say a body is a coverable body with respect to a lattice if such lattice covering is possible, and try to suggest a function of a given lattice such that any centrally symmetric convex body whose area is not less than the function is a coverable body. As an application of this result, we will suggest a theorem which enables one to apply this to a coverable body to suggesting an efficient lattice covering for general sets, which may be non-convex and may have holes.


2015 ◽  
Vol 67 (1) ◽  
pp. 3-27
Author(s):  
M. Angeles Alfonseca ◽  
Jaegil Kim

AbstractOne of the fundamental results in convex geometry is Busemann's theorem, which states that the intersection body of a symmetric convex body is convex. Thus, it is only natural to ask if there is a quantitative version of Busemann's theorem, i.e., if the intersection body operation actually improves convexity. In this paper we concentrate on the symmetric bodies of revolution to provide several results on the (strict) improvement of convexity under the intersection body operation. It is shown that the intersection body of a symmetric convex body of revolution has the same asymptotic behavior near the equator as the Euclidean ball. We apply this result to show that in sufficiently high dimension the double intersection body of a symmetric convex body of revolution is very close to an ellipsoid in the Banach–Mazur distance. We also prove results on the local convexity at the equator of intersection bodies in the class of star bodies of revolution.


Author(s):  
SILOUANOS BRAZITIKOS ◽  
PANTELIS STAVRAKAKIS

AbstractLet C be a symmetric convex body of volume 1 in ${\mathbb R}^n$. We provide general estimates for the volume and the radius of C ∩ U(C) where U is a random orthogonal transformation of ${\mathbb R}^n$. In particular, we consider the case where C is in the isotropic position or C is the volume normalized Lq-centroid body Zq(μ) of an isotropic log-concave measure μ on ${\mathbb R}^n$.


2013 ◽  
Vol 50 (2) ◽  
pp. 159-198
Author(s):  
K. Böröczky ◽  
E. Makai ◽  
M. Meyer ◽  
S. Reisner

Let K ⊂ ℝ2 be an o-symmetric convex body, and K* its polar body. Then we have |K| · |K*| ≧ 8, with equality if and only if K is a parallelogram. (|·| denotes volume). If K ⊂ ℝ2 is a convex body, with o ∈ int K, then |K| · |K*| ≧ 27/4, with equality if and only if K is a triangle and o is its centroid. If K ⊂ ℝ2 is a convex body, then we have |K| · |[(K − K)/2)]*| ≧ 6, with equality if and only if K is a triangle. These theorems are due to Mahler and Reisner, Mahler and Meyer, and to Eggleston, respectively. We show an analogous theorem: if K has n-fold rotational symmetry about o, then |K| · |K*| ≧ n2 sin2(π/n), with equality if and only if K is a regular n-gon of centre o. We will also give stability variants of these four inequalities, both for the body, and for the centre of polarity. For this we use the Banach-Mazur distance (from parallelograms, or triangles), or its analogue with similar copies rather than affine transforms (from regular n-gons), respectively. The stability variants are sharp, up to constant factors. We extend the inequality |K| · |K*| ≧ n2 sin2(π/n) to bodies with o ∈ int K, which contain, and are contained in, two regular n-gons, the vertices of the contained n-gon being incident to the sides of the containing n-gon. Our key lemma is a stability estimate for the area product of two sectors of convex bodies polar to each other. To several of our statements we give several proofs; in particular, we give a new proof for the theorem of Mahler-Reisner.


Sign in / Sign up

Export Citation Format

Share Document