scholarly journals Linear mappings between topological vector spaces

1972 ◽  
Vol 14 (1) ◽  
pp. 105-118
Author(s):  
B. D. Craven

If A and B are locally convex topological vector spaces, and B has certain additional structure, then the space L(A, B) of all continuous linear mappings of A into B is characterized, within isomorphism, as the inductive limit of a family of spaces, whose elements are functions, or measures. The isomorphism is topological if L(A, B) is given a particular topology, defined in terms of the seminorms which define the topologies of A and B. The additional structure on B enables L(A, B) to be constructed, using the duals of the normed spaces obtained by giving A the topology of each of its seminorms separately.

1968 ◽  
Vol 9 (2) ◽  
pp. 103-105 ◽  
Author(s):  
John S. Pym

Let {Ui, Uij} be an inductive system of normed linear spaces Ui and continuous linear maps uij; Uj → Ui. (We write j ≺ i if uij: Uj → Ui.) An inductive limit of the system with respect to a class of spaces A in and maps f in is a space Uu in Uu and a system ui → Uu of maps in such that (i) whenever j ≺ i, and that (ii) if A is any space in and fi: Ui → A is any system of maps in for which then there is a unique map f: Uu → A in such that fi = fo ui for each i. If is the class of all vector spaces and is the class of linear maps, we obtain the algebraic inductive limit, which we denote simply by U. The usual choice is to take to be the class of locally convex spaces and the class of continuous linear maps; the inductive limit UL then always exists [1, § 16 C]. If is again the continuous linear mappings but contains only normed spaces, the corresponding inductive limit UN may not always exist. However, if in addition we require that contains just contractions (norm-decreasing linear mappings), then an inductive limit Uc will exist if every uij is a contraction [2]. We shall give a condition under which these limits coincide (as far as possible), and consider the corresponding condition for projective limits.


1990 ◽  
Vol 9 (1) ◽  
pp. 15-18
Author(s):  
M. A. Muller

Homological spaces were defined by Hogbe-Nlend in 1971 and pseudo-topological spaces by Fischer in 1959. In this paper properties of bornological pseudo-topological vector spaces are investigated. A characterization of such spaces is obtained and it is shown that quotient spaces and direct sums o f boruological pseudo-topological vector spaces are bornological. Every bornological locally convex pseudo-topological vector space is shown to be the inductive limit in the category of pseudo-topological vector spaces of a family of locally convex topological vector spaces.


Filomat ◽  
2017 ◽  
Vol 31 (16) ◽  
pp. 5111-5116
Author(s):  
Davood Ayaseha

We study the locally convex cones which have finite dimension. We introduce the Euclidean convex quasiuniform structure on a finite dimensional cone. In special case of finite dimensional locally convex topological vector spaces, the symmetric topology induced by the Euclidean convex quasiuniform structure reduces to the known concept of Euclidean topology. We prove that the dual of a finite dimensional cone endowed with the Euclidean convex quasiuniform structure is identical with it?s algebraic dual.


1992 ◽  
Vol 34 (2) ◽  
pp. 175-188
Author(s):  
Neill Robertson

By the term “locally convex space”, we mean a locally convex Hausdorff topological vector space (see [17]). We shall denote the algebraic dual of a locally convex space E by E*, and its topological dual by E′. It is convenient to think of the elements of E as being linear functionals on E′, so that E can be identified with a subspace of E′*. The adjoint of a continuous linear map T:E→F will be denoted by T′:F′→E′. If 〈E, F〈 is a dual pair of vector spaces, then we shall denote the corresponding weak, strong and Mackey topologies on E by α(E, F), β(E, F) and μ(E, F) respectively.


1989 ◽  
Vol 12 (3) ◽  
pp. 429-434
Author(s):  
V. Murali

In this note we define and discuss some properties of partition of unity on *-inductive limits of topological vector spaces. We prove that if a partition of unity exists on a *-inductive limit space of a collection of topological vector spaces, then it is isomorphic and homeomorphic to a subspace of a *-direct sum of topological vector spaces.


2008 ◽  
Vol 50 (2) ◽  
pp. 271-288
Author(s):  
HELGE GLÖCKNER

AbstractThe General Curve Lemma is a tool of Infinite-Dimensional Analysis that enables refined studies of differentiability properties of maps between real locally convex spaces to be made. In this article, we generalize the General Curve Lemma in two ways. First, we remove the condition of local convexity in the real case. Second, we adapt the lemma to the case of curves in topological vector spaces over ultrametric fields.


Author(s):  
Thomas W. Reiland

Interval-Lipschitz mappings between topological vector spaces are defined and compared with other Lipschitz-type operators. A theory of generalized gradients is presented when both spaces are locally convex and the range space is an order complete vector lattice. Sample applications to the theory of nonsmooth optimization are given.


Sign in / Sign up

Export Citation Format

Share Document