scholarly journals On f(n) modulo Ω(n) and ω(n) when f is a polynomial

2004 ◽  
Vol 77 (2) ◽  
pp. 149-164 ◽  
Author(s):  
Florian Luca

AbstractIn this paper we show that if f (X) ∈; Z [X ] is a nonzero polynomial, then ω(n)/f(n) holds only on a set of n of asymptotic density zero, where for a positive integer n the number ω(n) counts the number of distinct prime factors ofn.

2014 ◽  
Vol 10 (04) ◽  
pp. 915-933 ◽  
Author(s):  
Florian Luca ◽  
Carl Pomerance

Let z(N) be the order of appearance of N in the Fibonacci sequence. This is the smallest positive integer k such that N divides the k th Fibonacci number. We show that each of the six total possible orderings among z(N), z(N + 1), z(N + 2) appears infinitely often. We also show that for each nonzero even integer c and many odd integers c the equation z(N) = z(N + c) has infinitely many solutions N, but the set of solutions has asymptotic density zero. The proofs use a result of Corvaja and Zannier on the height of a rational function at 𝒮-unit points as well as sieve methods.


2020 ◽  
Vol 63 (4) ◽  
pp. 1031-1047
Author(s):  
Florian Luca ◽  
Sibusiso Mabaso ◽  
Pantelimon Stănică

AbstractIn this paper, for a positive integer n ≥ 1, we look at the size and prime factors of the iterates of the Ramanujan τ function applied to n.


1955 ◽  
Vol 7 ◽  
pp. 347-357 ◽  
Author(s):  
D. H. Lehmer

This paper is concerned with the numbers which are relatively prime to a given positive integerwhere the p's are the distinct prime factors of n. Since these numbers recur periodically with period n, it suffices to study the ϕ(n) numbers ≤n and relatively prime to n.


2018 ◽  
Vol 14 (08) ◽  
pp. 2219-2223
Author(s):  
Paolo Leonetti ◽  
Carlo Sanna

Given positive integers [Formula: see text], we prove that the set of primes [Formula: see text] such that [Formula: see text] for [Formula: see text] admits asymptotic density relative to the set of all primes which is at least [Formula: see text], where [Formula: see text] is the Euler totient function. This result is similar to the one of Heilbronn and Rohrbach, which says that the set of positive integer [Formula: see text] such that [Formula: see text] for [Formula: see text] admits asymptotic density which is at least [Formula: see text].


2008 ◽  
Vol 78 (3) ◽  
pp. 431-436 ◽  
Author(s):  
XUE-GONG SUN ◽  
JIN-HUI FANG

AbstractErdős and Odlyzko proved that odd integers k such that k2n+1 is prime for some positive integer n have a positive lower density. In this paper, we characterize all arithmetic progressions in which natural numbers that can be expressed in the form (p−1)2−n (where p is a prime number) have a positive proportion. We also prove that an arithmetic progression consisting of odd numbers can be obtained from a covering system if and only if those integers in such a progression which can be expressed in the form (p−1)2−n have an asymptotic density of zero.


1967 ◽  
Vol 15 (4) ◽  
pp. 249-255
Author(s):  
Sean Mc Donagh

1. In deriving an expression for the number of representations of a sufficiently large integer N in the formwhere k: is a positive integer, s(k) a suitably large function of k and pi is a prime number, i = 1, 2, …, s(k), by Vinogradov's method it is necessary to obtain estimates for trigonometrical sums of the typewhere ω = l/k and the real number a satisfies 0 ≦ α ≦ 1 and is “near” a rational number a/q, (a, q) = 1, with “large” denominator q. See Estermann (1), Chapter 3, for the case k = 1 or Hua (2), for the general case. The meaning of “near” and “arge” is made clear below—Lemma 4—as it is necessary for us to quote Hua's estimate. In this paper, in Theorem 1, an estimate is obtained for the trigonometrical sumwhere α satisfies the same conditions as above and where π denotes a squarefree number with r prime factors. This estimate enables one to derive expressions for the number of representations of a sufficiently large integer N in the formwhere s(k) has the same meaning as above and where πri, i = 1, 2, …, s(k), denotes a square-free integer with ri prime factors.


2012 ◽  
Vol 93 (1-2) ◽  
pp. 85-90 ◽  
Author(s):  
ANDREJ DUJELLA ◽  
FLORIAN LUCA

AbstractWe study positive integers $n$ such that $n\phi (n)\equiv 2\hspace{0.167em} {\rm mod}\hspace{0.167em} \sigma (n)$, where $\phi (n)$ and $\sigma (n)$ are the Euler function and the sum of divisors function of the positive integer $n$, respectively. We give a general ineffective result showing that there are only finitely many such $n$ whose prime factors belong to a fixed finite set. When this finite set consists only of the two primes $2$ and $3$ we use continued fractions to find all such positive integers $n$.


2018 ◽  
Vol 14 (05) ◽  
pp. 1487-1503
Author(s):  
Nicholas Schwab ◽  
Lola Thompson

A positive integer [Formula: see text] is practical if every [Formula: see text] can be written as a sum of distinct divisors of [Formula: see text]. One can generalize the concept of practical numbers by applying an arithmetic function [Formula: see text] to each of the divisors of [Formula: see text] and asking whether all integers in a certain interval can be expressed as sums of [Formula: see text]’s, where the [Formula: see text]’s are distinct divisors of [Formula: see text]. We will refer to such [Formula: see text] as “[Formula: see text]-practical”. In this paper, we introduce the [Formula: see text]-practical numbers for the first time. We give criteria for when all [Formula: see text]-practical numbers can be constructed via a simple necessary-and-sufficient condition, demonstrate that it is possible to construct [Formula: see text]-practical sets with any asymptotic density, and prove a series of results related to the distribution of [Formula: see text]-practical numbers for many well-known arithmetic functions [Formula: see text].


Author(s):  
Xu Yifan ◽  
Shen Zhongyan

By using the properties of Euler function, an upper bound of solutions of Euler function equation  is given, where  is a positive integer. By using the classification discussion and the upper bound we obtained, all positive integer solutions of the generalized Euler function equation  are given, where is the number of distinct prime factors of n.


1959 ◽  
Vol 11 ◽  
pp. 161-167 ◽  
Author(s):  
P. Erdös

Let 1 < a1 < a2 < … be a sequence of integers and let N(x) denote the number of a's not exceeding x. If N(x)/x tends to a limit as x tends to infinity we say that the a's have a density. Often one calls it the asymptotic density to distinguish it from the Schnirelmann or arithmetical density. The statement that almost all integers have a certain property will mean that the integers which do not have this property have density 0. Throughout this paper p, q, r will denote primes.I conjectured for a long time that, if e > 0 is any given number, then almost all integers n have two divisors d1 and d2 satisfying1


Sign in / Sign up

Export Citation Format

Share Document