scholarly journals The endomorphism ring of a locally free module

Author(s):  
W. N. Franzsen ◽  
P. Schultz

AbstractWe identify a large class of rings over which locally free modules are determined by their endomorphism rings. We characterize these endomorphism rings and consider under what circumstances the conditions on the locally free modules can be relaxed, for example by requiring that only one of the rings need be in the special class, or by replacing ‘free' by “projective”.

Author(s):  
J. L. García

AbstractWe consider the problem of characterizing by abstract properties the rings which are isomorphic to the endomorphism ring End (RF) of some free module F over a ring R in a given class R of rings. We solve this problem when R is any class of rings (by employing topological notions) and when R is the class of all the left Kasch rings (in terms of algebraic properties only).


1978 ◽  
Vol 30 (5) ◽  
pp. 1070-1078 ◽  
Author(s):  
Soumaya M. Khuri

A Baer ring is a ring in which every right (and left) annihilator ideal is generated by an idempotent. Generalizing quite naturally from the fact that the endomorphism ring of a vector space is a Baer ring, Wolfson [5; 6] investigated questions such as when the endomorphism ring of a free module is a Baer ring, and when the ring of continuous linear transformations on a pair of dual vector spaces is a Baer ring. A further generalization was made in [7], where the question of when the endomorphism ring of a torsion-free module over a semiprime left Goldie ring is a Baer ring was treated.


1991 ◽  
Vol 44 (2) ◽  
pp. 189-201 ◽  
Author(s):  
Ulrich Albrecht ◽  
Jutta Hausen

Given a torsion-free abelian group G, a subgroup A of G is said to be a quasi-summand of G if nG ≤ A ⊕ B ≤ G for some subgroup B of G and some positive integer n. If the intersection of any two quasi-summands of G is a quasi-summand, then G is said to have the quasi-summand intersection property. This is a generalisation of the summand intersection property of L. Fuchs. In this note, we give a complete characterisation of the torsion-free abelian groups (in fact, torsion-free modules over torsion-free rings) with the quasi-summand intersection property. It is shown that such a characterisation cannot be given via endomorphism rings alone but must involve the way in which the endomorphism ring acts on the underlying group. For torsion-free groups G of finite rank without proper fully invariant quasi-summands however, the structure of its quasi-endomorphism ring QE(G) suffices: G has the quasi-summand intersection property if and only if the ring QE(G) is simple or else G is strongly indecomposable.


1988 ◽  
Vol 31 (3) ◽  
pp. 374-379 ◽  
Author(s):  
Kenneth G. Wolfson

AbstractA prime Goldie ring K, in which each finitely generated left ideal is principal is the endomorphism ring E(F, A) of a free module A, of finite rank, over an Ore domain F. We determine necessary and sufficient conditions to insure that whenever K ≅ E(F, A) ≅ E(G, B) (with A and B free and finitely generated over domains F and G) then (F, A) is semi-linearly isomorphic to (G, B). We also show, by example, that it is possible for K ≅ E(F, A ) ≅ E(G, B), with F and G, not isomorphic.


1993 ◽  
Vol 35 (3) ◽  
pp. 353-355 ◽  
Author(s):  
José Luis García ◽  
Juan Jacobo Simón

Let R and S be arbitrary rings, RM and SN countably generated free modules, and let φ:End(RM)→End(sN) be an isomorphism between the endomorphism rings of M and N. Camillo [3] showed in 1984 that these assumptions imply that R and S are Morita equivalent rings. Indeed, as Bolla pointed out in [2], in this case the isomorphism φ must be induced by some Morita equivalence between R and S. The same holds true if one assumes that RM and SN are, more generally, non-finitely generated free modules.


1971 ◽  
Vol 23 (1) ◽  
pp. 69-76 ◽  
Author(s):  
J. Zelmanowitz

The problem of classifying the torsion-free abelian groups with commutative endomorphism rings appears as Fuchs’ problems in [4, Problems 46 and 47]. They are far from solved, and the obstacles to a solution appear formidable (see [4; 5]). It is, however, easy to see that the only dualizable abelian group with a commutative endomorphism ring is the infinite cyclic group. (An R-module Miscalled dualizable if HomR(M, R) ≠ 0.) Motivated by this, we study the class of prime rings R which possess a dualizable module M with a commutative endomorphism ring. A characterization of such rings is obtained in § 6, which as would be expected, places stringent restrictions on the ring and the module.Throughout we will write homomorphisms of modules on the side opposite to the scalar action. Rings will not be assumed to contain identity elements unless otherwise indicated.


2019 ◽  
Vol 19 (03) ◽  
pp. 2050048
Author(s):  
Lixin Mao

Let [Formula: see text] and [Formula: see text] be fixed positive integers. [Formula: see text] is called a right [Formula: see text]-injective ring if every right [Formula: see text]-homomorphism from an [Formula: see text]-generated submodule of the right [Formula: see text]-module [Formula: see text] to [Formula: see text] extends to one from [Formula: see text] to [Formula: see text]; [Formula: see text] is called a right [Formula: see text]-coherent ring if each [Formula: see text]-generated submodule of the right [Formula: see text]-module [Formula: see text] is a finitely presented right [Formula: see text]-module. Let [Formula: see text] be a right [Formula: see text]-module. We study the [Formula: see text]-injectivity and [Formula: see text]-coherence of the endomorphism ring [Formula: see text] of [Formula: see text]. Some applications are also given.


Sign in / Sign up

Export Citation Format

Share Document