scholarly journals Hyperbolic manifolds and degenerating handle additions

Author(s):  
Martin Scharlemann ◽  
Ying-Qing Wu

AbstractA 2-handle addition on the boundary of a hyperbolic 3-manifold M is called degenerating if the resulting manifold is not hyperbolic. There are examples that some manifolds admit infinitely many degenerating handle additions. But most of them are not ‘basic’. (See Section 1 for definitions). Our first main theorem shows that there are only finitely many basic degenerating handle additions. We also study the case that one of the handle additions produces a reducible manifold, and another produces a ∂-reducible manifold, showing that in this case either the two attaching curves are disjoint, or they can be isotoped into a once-punctured torus. A byproduct is a combinatorial proof of a similar known result about degenerating hyperbolic structures by Dehn filling.

2021 ◽  
Vol 112 (1) ◽  
Author(s):  
E. Molnár ◽  
I. Prok ◽  
J. Szirmai

AbstractIn connection with our works in Molnár (On isometries of space forms. Colloquia Math Soc János Bolyai 56 (1989). Differential geometry and its applications, Eger (Hungary), North-Holland Co., Amsterdam, 1992), Molnár (Acta Math Hung 59(1–2):175–216, 1992), Molnár (Beiträge zur Algebra und Geometrie 38/2:261–288, 1997) and Molnár et al. (in: Prékopa, Molnár (eds) Non-Euclidean geometries, János Bolyai memorial volume mathematics and its applications, Springer, Berlin, 2006), Molnár et al. (Symmetry Cult Sci 22(3–4):435–459, 2011) our computer program (Prok in Period Polytech Ser Mech Eng 36(3–4):299–316, 1992) found 5079 equivariance classes for combinatorial face pairings of the double-simplex. From this list we have chosen those 7 classes which can form charts for hyperbolic manifolds by double-simplices with ideal vertices. In such a way we have obtained the orientable manifold of Thurston (The geometry and topology of 3-manifolds (Lecture notes), Princeton University, Princeton, 1978), that of Fomenko–Matveev–Weeks (Fomenko and Matveev in Uspehi Mat Nauk 43:5–22, 1988; Weeks in Hyperbolic structures on three-manifolds. Ph.D. dissertation, Princeton, 1985) and a nonorientable manifold $$M_{c^2}$$ M c 2 with double simplex $${\widetilde{{\mathcal {D}}}}_1$$ D ~ 1 , seemingly known by Adams (J Lond Math Soc (2) 38:555–565, 1988), Adams and Sherman (Discret Comput Geom 6:135–153, 1991), Francis (Three-manifolds obtainable from two and three tetrahedra. Master Thesis, William College, 1987) as a 2-cusped one. This last one is represented for us in 5 non-equivariant double-simplex pairings. In this paper we are going to determine the possible Dehn type surgeries of $$M_{c^2}={\widetilde{{\mathcal {D}}}}_1$$ M c 2 = D ~ 1 , leading to compact hyperbolic cone manifolds and multiple tilings, especially orbifolds (simple tilings) with new fundamental domain to $${\widetilde{{\mathcal {D}}}}_1$$ D ~ 1 . Except the starting regular ideal double simplex, we do not get further surgery manifold. We compute volumes for starting examples and limit cases by Lobachevsky method. Our procedure will be illustrated by surgeries of the simpler analogue, the Gieseking manifold (1912) on the base of our previous work (Molnár et al. in Publ Math Debr, 2020), leading to new compact cone manifolds and orbifolds as well. Our new graphic analysis and tables inform you about more details. This paper is partly a survey discussing as new results on Gieseking manifold and on $$M_{c^2}$$ M c 2 as well, their cone manifolds and orbifolds which were partly published in Molnár et al. (Novi Sad J Math 29(3):187–197, 1999) and Molnár et al. (in: Karáné, Sachs, Schipp (eds) Proceedings of “Internationale Tagung über geometrie, algebra und analysis”, Strommer Gyula Nemzeti Emlékkonferencia, Balatonfüred-Budapest, Hungary, 1999), updated now to Memory of Professor Gyula Strommer. Our intention is to illustrate interactions of Algebra, Analysis and Geometry via algorithmic and computational methods in a classical field of Geometry and of Mathematics, in general.


2010 ◽  
Vol 19 (05) ◽  
pp. 677-694 ◽  
Author(s):  
SUNGMO KANG

If a hyperbolic 3-manifold M admits a reducible and a finite Dehn filling, the distance between the filling slopes is known to be 1. This has been proved recently by Boyer, Gordon and Zhang. The first example of a manifold with two such fillings was given by Boyer and Zhang. In this paper, we give examples of hyperbolic manifolds admitting a reducible Dehn filling and a finite Dehn filling of every type: cyclic, dihedral, tetrahedral, octahedral and icosahedral.


2020 ◽  
Vol 8 ◽  
Author(s):  
DAVID DUMAS ◽  
ANNA LENZHEN ◽  
KASRA RAFI ◽  
JING TAO

We study the geometry of the Thurston metric on the Teichmüller space of hyperbolic structures on a surface $S$ . Some of our results on the coarse geometry of this metric apply to arbitrary surfaces $S$ of finite type; however, we focus particular attention on the case where the surface is a once-punctured torus. In that case, our results provide a detailed picture of the infinitesimal, local, and global behavior of the geodesics of the Thurston metric, as well as an analogue of Royden’s theorem.


2015 ◽  
Vol 24 (10) ◽  
pp. 1540005 ◽  
Author(s):  
Hirotaka Akiyoshi

We introduce the side parameter map from the space of cone hyperbolic structures on the torus with a single cone point to the hyperbolic plane ℍ2, based on the idea in the Jorgensen theory for punctured torus Kleinian groups. Then, we show that the side parameter map is a homeomorphism.


2015 ◽  
Vol 158 (3) ◽  
pp. 547-572
Author(s):  
JAMES W. ANDERSON

AbstractWe develop a condition on a closed curve on a surface or in a 3-manifold that implies that the length function associated to the curve on the space of all hyperbolic structures on the surface or in the 3-manifold (respectively) completely determines the curve. Specifically, for an orientable surfaceSof negative Euler characteristic, we extend the known result that simple curves have this property to curves with self-intersection number one (with one exceptional case arising from hyperellipticity that we describe completely). For a large class of hyperbolizable 3-manifolds, we show that curves freely homotopic to simple curves on ∂Mhave this property.


Author(s):  
Benson Farb ◽  
Dan Margalit

This chapter focuses on the metric geometry of Teichmüller space. It first explains how one can think of Teich(Sɡ) as the space of complex structures on Sɡ. To this end, the chapter defines quasiconformal maps between surfaces and presents a solution to the resulting Teichmüller's extremal problem. It also considers the correspondence between complex structures and hyperbolic structures, along with the Teichmüller mapping, Teichmüller metric, and the proof of Teichmüller's uniqueness and existence theorems. The fundamental connection between Teichmüller's theorems, holomorphic quadratic differentials, and measured foliations is discussed as well. Finally, the chapter describes the Grötzsch's problem, whose solution is tied to the proof of Teichmüller's uniqueness theorem.


2013 ◽  
Vol 22 (06) ◽  
pp. 1350014
Author(s):  
FATEMEH DOUROUDIAN

Using a Heegaard diagram for the pullback of a knot K ⊂ S3 in its double branched cover Σ2(K), we give a combinatorial proof for the invariance of the associated knot Floer homology over ℤ.


Sign in / Sign up

Export Citation Format

Share Document